InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
1). 1122). 1253). 1324). 122 |
|
Answer» The given EXPRESSION, $(\sqrt {575} \div 8.003 + {\left( {13.01} \right)^2} - \sqrt {2499} = ?)$ We can write above values as, √575 ≈ 24, 8.003 ≈ 8 13.01 ≈ 13 and √2499 ≈ 50 Then, ⇒ 24 ÷ 8 + 132 - 50 = ? ⇒ ? = 3 + 169 - 50 ⇒ ? ≈ 122 |
|
| 2. |
√1088.99 + √728.95 + √840.89 + x = 24.99% of 799.99 1). 1042). 1113). 964). 90 |
|
Answer» √1088.99 + √728.95 + √840.89 + X = 24.99% of 799.99 ⇒ √1089 + √729 + √841 + x = 25% of 800 ⇒ x + 89 = 200 ⇒ x = 111 |
|
| 3. |
1). 132). 203). 274). 42 |
|
Answer» (10.097)2 + (3.98)3 × 5.05 = 20.95 × ? APPROXIMATING the value to the nearest integer: 102 + 43 × 5 = 21 × (?) 100 + 64 × 5 = 21 × (?) 100 + 320 = 21 × (?) 420 = 21 × (?) ? = 420/21 ? = 20 |
|
| 4. |
(119.81 ÷ 59.79) × 180.10 = 39.71 × 8.25 + ?1). 532). 463). 404). 23 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an EQUATION enclosed in 'Brackets' MUST be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (119.81 ÷ 59.79) × 180.10 = 39.71 × 8.25 + ? We can write the given values as: ⇒ 119.81 ≈ 120 and 59.79 ≈ 60 and 180.10 ≈ 180 ⇒ 39.71 ≈ 40 and 8.25 ≈ 8 Then, ⇒ (120 ÷ 60) × 180 = 40 × 8 + ? ⇒ 2 × 180 = 40 × 8 + ? ⇒ 360 = 40 × 8 + ? ⇒ 360 = 320 + ? ⇒ ? = 360 - 320 ∴ ? ≈ 40 |
|
| 5. |
6789.97 – 4895.01 + 1055.99 = ? + 2309.991). 6412). 6493). 6104). 750 |
|
Answer» In this TYPE of question, we are expected to calculate Approximate value (not exact value), so we can replace the given NUMBERS by their NEAREST perfect places which makes the calculation easy. Let, 6789.97 ≈ 6790, 4895.01 ≈ 4895, 1055.99 ≈1056 and 2309.99 ≈2310 Now, given EXPRESSION: ⇒ 6790 – 4895 + 1056 = ? + 2310 ⇒ 1895 + 1056 = ? + 2310 ⇒ 2951 = ? + 2310 ⇒ ? = 2951 – 2310 ⇒ ? = 641 Hence, the REQUIRED answer is 641 |
|
| 6. |
1). 2002). 5003). 7004). 223 |
|
Answer» ⇒ √5378 × √3363 ÷ √360 = ? Approximating the VALUES to the nearest integer: ⇒ √5329 × √3364 ÷ √361 = ? ⇒ ? = 222.84 ≈ 223 |
|
| 7. |
1). 82). 23). 14). 6 |
|
Answer» (15 × 0.40)4 ÷ (1080 ÷ 30)4 × (27 × 8)4 = (3 × 2)?+6 $(\RIGHTARROW {\left( {15 \times \frac{4}{{10}}} \right)^4} \div {\left( {\frac{{1080}}{{30}}} \right)^4} \times {\left( {27 \times 8} \right)^4} = {6^{? + 6}})$ ⇒ 64 ÷ 364 × 274 × 84 = 6? + 6 $(\Rightarrow {\left( {\frac{{6 \times 27 \times 8}}{{36}}} \right)^4} = {6^{? + 6}})$ ⇒ 364 = 6?+6 ⇒ 68 = 6?+6 ⇒ 8 = ? + 6 ⇒ ? = 2 |
|
| 8. |
1). 2342). 1953). 2004). 188 |
|
Answer» 72 × 2.48 + 12 + 4.9 × 7.01 + 6.93 = ? ⇒ 72 × 2.5 + 12 + 5 × 7 + 7 = ? ∴ ? = 234. |
|
| 9. |
1). 21.242). 20.243). 2.1244). 2.024 |
|
Answer» 11.8 × 4.5 × 2.3 = 5.75 × ? $(\RIGHTARROW \:? = \FRAC{{11.8 \TIMES 4.5 \times 2.3}}{{5.75}})$ ⇒ ? = 11.8 × 4.5 × 0.4 ∴ ? = 21.24 |
|
| 10. |
[(6878 + 1333 - 8031) - (12.02 × 1.99 × 7.09)] × 2.532 = ?1). -2402). 403). 304). -180 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER given below, Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, [(6878 + 1333 - 8031) - (12.02 × 1.99 × 7.09)] × 2.532 = ? Taking approximate values as, 12.02 ≈ 12, 1.99 ≈ 2, 7.09 ≈ 7, 2.532 ≈ 2.5 ⇒ [180 - (12 × 2 × 7)] × 2.5 = ? ⇒ [180 - 168] × 2.5 = ? ⇒ 12 × 2.5 = ? ∴ ? = 30 |
|
| 11. |
1). 272). 33). 0.114). 0.3 |
|
Answer» Follow BODMAS rule to solve this question, as per the order GIVEN below, Step-1 - Parts of an equation enclosed in 'Brackets' MUST be solved FIRST, and in the BRACKET, Step-2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step-3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (3.4 × 0.5) + (9 × 0.7) = (?)2 - 1 ⇒ (1.7) + (6.3) = (?)2 – 1 ⇒ 8 = (?)2 – 1 ⇒ (?)2 = 8 + 1 = 9 ⇒ (?)2 = (3)2 ⇒ ? = 3 |
|
| 12. |
√3585 × √729 ÷ √84 = X% of 30001). 52). 103). 134). 6 |
|
Answer» ⇒ √3585 × √729 ÷ √84 = X% of 3000 ⇒ 180 = 30X ⇒ 180/30 = X ⇒ X = 6 |
|
| 13. |
(99,736 + 97,369 + 99,678 + 84,767) ÷ (963 + 889 + ? + 1922) = 651). 2,0962). 1,9983). 2,1924). 2,022 |
|
Answer» Follow BODMAS RULE to solve this QUESTION, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the BRACKET, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (99,736 + 97,369 + 99,678 + 84,767) ÷ (963 + 889 + ? + 1922) = 65 ⇒ 381,550 ÷ (3,774 + ?) = 65 ⇒ (3,774 + ?) = 381,550/65 ⇒ (3,774 + ?) = 5,870 ⇒? = 5,870 – 3,774 ⇒? = 2,096 |
|
| 14. |
632 ÷ 8 + 112 = ?1). 1802). 1853). 1914). 199 |
|
Answer» FOLLOW BODMAS rule to solve this question, as PER the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be SOLVED first, and in the bracket, the BODMAS rule must be followed. Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given Expression is, ⇒ 632 ÷ 8 + 112 = ? ⇒ 632 ÷ 8 + 121 = ? ⇒ 79 + 121 = ? ⇒ 200 = ? |
|
| 15. |
67% of 801 - 231.17 = ? - 23% of 7891). 4902). 4403). 5404). 520 |
|
Answer» 67% of 801 - 231.17 = ? - 23% of 789 ? = 67% of 801 - 231.17 + 23% of 789 ? = 536.67 - 231.17 + 181.47 ? ≈ 487 ≈ 490 |
|
| 16. |
998731.903 ÷ 77777.208 × 661.74 = ?1). 84452). 84543). 87874). 8778 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order given below, Step-1: Parts of an equation enclosed in 'Brackets' MUST be solved FIRST, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: LAST but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 998731.903 ÷ 77777.208 × 661.74 = ? ⇒ 12.841 × 661.74 = ? ⇒ ? = 8497.359 = 8497 |
|
| 17. |
253 × 43 × √810000 = ?21). 300002). 600003). 30004). 300 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER given below, Step-1: Parts of an EQUATION enclosed in the ‘BRACKETS’ must be solved first Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next Step-3: Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step-4: Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ 253 × 43 × √810000 = ?2 ⇒ (52)3 × (22)3 × 900 = (?)2 ⇒ 56 × 26 × 302 = (?)2 $(\Rightarrow \sqrt {{5^6}{\rm{\;}} \times {\rm{\;}}{2^6}{\rm{\;}} \times {\rm{\;}}{{30}^2}{\rm{\;}}} {\rm{\;}} = \;?)$ ⇒ 53 × 23 × 30 = ? ⇒ 125 × 8 × 30 = ? ⇒ 30000 = ? |
|
| 18. |
1252 × 57 ÷ 252 × 100 ÷ 8 = 125 × 8 × 58 ÷ 16x1). 1/42). 1/23). 14). 1/5 |
|
Answer» Given equation, ⇒ 1252 × 57 ÷ 252 × 100 ÷ 8 = 125 × 8 × 58 ÷ 16x Taking into base FACTORS, ⇒ 56 × 57 ÷ 54 × 52 × 22 ÷ 23 = 53 × 23 × 58 ÷ 24x ⇒ 5(6 + 7 – 4 + 2) × 2(2 – 3) = 5(8 + 3) × 2(3 – 4x) ⇒ 5(11 – 11) = 2(3 – 4x + 1) ⇒ 50 = 2(4 – 4x) ⇒ 1 = 2(4 – 4x) ⇒ 20 = 2(4 – 4x) Equating powers, ⇒ 4 – 4x = 0 ⇒ x = 1 |
|
| 19. |
74.80 × 2.89 - ?3 = 83.10 – 74.351). 12). 43). 54). 6 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation ENCLOSED in 'Brackets' must be solved FIRST, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not the least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given Expression, 74.80 × 2.89 - ?3 = 83.10 – 74.35 We can also WRITE values as: 74.80 ≈ 75, 2.89 ≈ 3, 83.10 ≈ 83, 74.35 ≈ 74 Given expression becomes, ⇒ 75 × 3 - ?3 = 83 - 74 ⇒ 225 - ?3 = 83 - 74 ⇒ 225 - ?3 = 9 ⇒ ?3 = 216 ⇒ ? ≈ 6 |
|
| 20. |
Find the value of the expression [{[(20 ÷ 2) + (15 ÷ 3)] + (50 – 20)} ÷ (6 + 3)] + (12 × 2) = ?1). 202). 293). 254). 30 |
|
Answer» ⇒ [{[(10) + (5)] + 30} ÷ (9)] + 24 ⇒ [{15 + 30} ÷ (9)] + 24 ⇒ [45 ÷ 9] + 24 ⇒ 5 + 24 = 29 ∴ Value of the EXPRESSION is 29 |
|
| 21. |
1). 2/52). 7/103). 125/1444). 26/52 |
|
Answer» $(\FRAC{{0.5{\RM{}} \TIMES {\rm{}}0.1{\rm{}} \times {\rm{}}0.25{\rm{}} \times {\rm{}}0.01}}{{0.2{\rm{}} \times {\rm{}}0.2{\rm{}} \times {\rm{}}0.4{\rm{}} \times {\rm{}}0.03{\rm{}} \times {\rm{}}0.3}} = ?)$ = $(\frac{{0.05{\rm{}} \times {\rm{}}0.0025}}{{0.016{\rm{}} \times {\rm{}}0.009}})$ = 0.000125/0.000144 = 125/144 |
|
| 22. |
27 × ? = 6075 ÷ 151). 182). 25.3). 154). 17. |
|
Answer» Let ‘X’ be the required number. Then according to question, ⇒ 27 × X = 6075/15 $(\Rightarrow {\rm{\;X\;}} = {\rm{\;}}\FRAC{{\left( {\frac{{6075}}{{15}}} \right)}}{{27}})$ ⇒ X = $(\frac{{6075}}{{15 \TIMES 27}}{\rm{\;}})$ ⇒ X = 15 |
|
| 23. |
34.5% of 1800 + 12.4% of 1500 = (?)2 + 7261). 272). 93). 814). 162 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation ENCLOSED in 'Brackets' must be solved FIRST, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. 34.5% of 1800 + 12.4% of 1500 = (?)2 + 726 ⇒ 0.345 × 1800 + 0.124 × 1500 = ?2 + 726 ⇒ 807 = ?2 + 726 ⇒ ?2 = 81 ⇒ ? = 9 |
|
| 24. |
\(\sqrt ? \times \sqrt {3025} = 2640\)1). 24012). 22093). 26014). 2304 |
|
Answer» GIVEN Equation is, $(\sqrt ? \times \sqrt {3025} = 2640)$ ⇒ √? × 55 = 2640 ⇒ √? = 48 ⇒ ? = 2304 |
|
| 25. |
1). 14982). 19903). 18564). 1590 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(9{\rm{\;of\ }}\frac{{16}}{3}\ {\rm{of\ }}\frac{{42}}{{32}}\ {\rm{of\ }}\frac{1}{{27}}\ {\rm{of\ }}\frac{3}{4}\ {\rm{of\;}}856 = {\rm{\;}}?)$ ⇒ 9 × (16/3) × (42/32) × (1/27) × (3/4) × 856 = ? ⇒ 48 × 42/32 × 1/27 × ¾ × 856 = ? ⇒ 63 × (1/27) × ¾ × 856 = ? ⇒ 7/3 × ¾ × 856 = ? ⇒ 7/4 × 856 = ? ⇒ ? = 214 × 7 ⇒ ? = 1498 |
|
| 26. |
1). 4672). 9673). 8674). 997 |
||||||||||||||
|
Answer» According to the BODMAS rule, the priority in which the operations should be done is:
⇒ 340.01/20.002 ÷ 29.899/510 × 180.002/59.98 = (?) APPROXIMATING the value to the NEAREST integer: ⇒ 340/20 ÷ 30/510 × 180/60 = (?) ⇒ 340/20 × 510/30 × 180/60 = (?) ⇒ 17 × 17 × 3 = (?) (?) = 867 |
|||||||||||||||
| 27. |
24.082 × 9.964 × 23.980 = ?1). 57202). 58203). 57604). 5932 |
|
Answer» 24.082 × 9.964 × 23.980 = ? Here, 24.082 ≈ 24 9.964 ≈ 10 23.980 ≈ 24 Now, the GIVEN expression will BECOME: ⇒ ? ≈ 24 × 10 × 24 ⇒ ? ≈ 5760 |
|
| 28. |
1331 × 0.11 × 121 × 11 = (1.1)? × 1100001). 72). 33). 64). 8 |
|
Answer» 1331 × 0.11 × 121 × 11 = (1.1)? × 110000 Make FACTORS of the TERMS in the equation ⇒ 11 × 11 × 11 × 0.11 × 11 × 11 × 11 = (1.1)? × 110000 ⇒ (1.1)? = 11 × 11 × 11 × 11/100 × 11 × 11 × 11/110000 ⇒ (1.1)? = (11)6/(10)6 ⇒ (1.1)? = (1.1)6 ⇒ ? = 6 |
|
| 29. |
1). 429.22). 245.93). 125.504). 123 |
|
Answer» 2.75 + 67.25 – 25.90 + 81.25 × 3 – 82.45 × 2 = ? ÷ 2 ⇒ 44.1 + 243.75 - 164.9 = ? ÷ 2 ⇒ ? = 122.95 × 2 ∴? = 245.9 |
|
| 30. |
71.88 × 3.90 + 11.90 = 67.95 + ? × 4.151). 282). 183). 584). 43 |
|
Answer» Given expression is, 71.88 × 3.90 + 11.90 = 67.95 + ? × 4.15 We can write the given values as: 71.88 ≈ 72 and 3.90 ≈ 4 11.90 ≈ 12 and 67.95 ≈ 68 and 4.15 ≈ 4 Then, ⇒ 72 × 4 + 12 = 68 + ? × 4 ⇒ 288 + 12 = 68 + ? × 4 ⇒ 300 = 68 = ? × 4 ⇒ 300 - 68 = ? × 4 ⇒ 232 = ? × 4 ⇒ ? = 232/4 ⇒ ? ≈ 58 |
|
| 31. |
335.01 × 24.99 ÷ 5.5 = ?1). 14902). 15203). 14204). 1590 |
|
Answer» 335.01 × 24.99 ÷ 5.5 = ? This can be APPROXIMATED as ? = 335 × 25/5.5 ≈ 1550 |
|
| 32. |
\(\;1\frac{1}{4} + 2\frac{1}{5} \times \frac{5}{8} \div 4\frac{1}{2} = ?\)1). \(1\frac{5}{9}\)2). \(1\frac{7}{9}\)3). \(2\frac{5}{9}\)4). \(1\frac{5}{{11}}\) |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step-1-Parts of an equation enclosed in 'Brackets' must be solved first, Step-2-Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. The given expression: $(\begin{array}{l} 1\frac{1}{4} + 2\frac{1}{5} \times \frac{5}{8} \div 4\frac{1}{2} = ?\\ \Rightarrow \frac{5}{4} + \frac{{11}}{5} \times \frac{5}{8} \div \frac{9}{2} = ?\\ \Rightarrow \frac{5}{4} + \frac{{11}}{5} \times \frac{5}{8} \times \frac{2}{9} = ?\\ \Rightarrow \frac{5}{4} + \frac{{11}}{{36}} = ?\\ \Rightarrow \frac{{\LEFT( {5 \times 9} \right) + 11}}{{36}} = ?\\ \Rightarrow \frac{{45 + 11}}{{36}}\\ = \frac{{56}}{{36}}\\ = \frac{{14}}{9} = 1\frac{5}{9} \END{array})$ |
|
| 33. |
1). 2462). 3003). 4654). 900 |
|
Answer» B- Bracket O- Of D- Division M- Multiplication A- Addition S- Subtraction According to this RULE, ⇒ 69 + 123 × 2 - 4 = ? ÷ 3 + 11 ⇒ 69 + 246 - 4 = ? ÷ 3 + 11 ⇒ 315 - 4 = ? ÷ 3 + 11 ⇒ 311 - 11 = ? ÷ 3 ⇒ 300 × 3 = ? ∴ ? = 900 |
|
| 34. |
1). 44102). 21243). 44124). 1024 |
|
Answer» GIVEN expression: ⇒ √? = 516 – 484 = 32 ∴ ? = (32)2 = 32 × 32 = 1024 |
|
| 35. |
1). 1342). 1443). 1844). 124 |
|
Answer» Follow BODMAS rule to solve this QUESTION, as PER the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is 142$ - 32$ - 43 = ? ⇒ 196 - 9 - 43 = ? ⇒ ? = 144 |
|
| 36. |
1). 42). 33). 24). 6 |
|
Answer» FOLLOW BODMAS rules to solve the equation Step-1: The part of the equation containing 'Brackets' must be solved first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4: At last, the part of the equation that CONTAINS 'Addition' and 'Subtraction' should be solved. [(23 × 22 × 242)] ÷ (2 × √1296) = (3)? + 7 ⇒ (23 × 4 × 576) / (2×36) = 7 + (3)? [? √1296 = 36] ⇒ (23 × 32) = 7 + (3)? ⇒ 736 = 7 + (3)? ⇒ 729 = (3)? ⇒ (3)6 = (3)? ∴ ? = 6 |
|
| 37. |
1). 272). 93). 114). 5 |
|
Answer» ⇒ (11.90 % of 1200) ÷ 6.10 = (?)3 – 2.91 $(\RIGHTARROW \left( {\FRAC{{12}}{{100}} \times 1200} \RIGHT) \div 6.10)$ = (?)3 – 2.91 ⇒ 144 ÷ 6 = (?)3 – 3 ⇒ 24 = (?)3 – 3 ⇒ (?)3 = 27 ⇒ (?)3 = 33 ⇒ ? = 3 |
|
| 38. |
√8649 =?1). 892). 973). 934). 91 |
|
Answer» 8649 can be written as: 8649 = 3 × 3 × 31 × 31 ⇒ 8649 = 32 × 312 ⇒ √8649 = √ [32 × 312] ⇒ √8649 = 3 × 31 ⇒ √8649 = 93 |
|
| 39. |
1). 6502). 7003). 6004). 750 |
|
Answer» 3.2% of 500 × 2.4% of ? = 230.4 ⇒ 0.032 × 500 × 0.024 × ? = 230.4 ⇒ 0.384 × ? = 230.4 ⇒ ? = 600 |
|
| 40. |
1). 2202). 2163). 2404). 356 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order is given below, Step-1: Parts of an EQUATION enclosed in 'Brackets' must be SOLVED first and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 67 + 85 ÷ (8 + 9) = ? ÷ 3 ⇒ 67 + 85 ÷ 17 = ? ÷ 3 ⇒ 67 + 5 = ? ÷ 3 ⇒ 72 = ? ÷ 3 ⇒ ? = 72 × 3 = 216 ∴ ? = 216 |
|
| 41. |
3140 – 55 × 1422 ÷ 79 = ? × 22 + 1428 ÷ 8.41). 902). 853). 804). 95 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 3140 – 55 × 1422 ÷ 79 = ? × 22 + 1428 ÷ 8.4 Applying BODMAS Rule; ⇒ 3140 – 55 × 18 = 22 × ? + 170 ⇒ 3140 – 990 = 22 × ? + 170 ⇒ 22 × ? = 1980 ∴ ? = 90 |
|
| 42. |
90.77 + 116.81 ÷ 13.40 – 44.16 = 152.67 - ?1). 972). 1573). 1074). 119 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not the least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given Expression, 90.77 + 116.81 ÷ 13.40 – 44.16 = 152.67 - ? We can also write values as: 90.77 ≈ 91, 116.81 ≈ 117, 13.40 ≈ 13, 44.16 ≈ 44, 152.67 ≈ 153 Given expression becomes, ⇒ 91 + 117 ÷ 13 – 44 = 153 - ? ⇒ 91 + 9 – 44 = 153 - ? ⇒ 100 – 44 = 153 - ? ⇒ 56 = 153 - ? ⇒ ? = 153 – 56 ⇒ ? ≈ 97 |
|
| 43. |
1). 1652). 453). 754). 105 |
|
Answer» Since, we need to FIND out the approximate value, So, we can write these VALUES to their NEAREST integers. Given expression is √3601 × √624 ÷ √399 = ? ⇒ ? ≈ √3600× √625÷ √400 ⇒ ? = 60 × 25 ÷ 20 ⇒ ? = 75 |
|
| 44. |
1). 42). 33). 84). 2 |
|
Answer» Given expression is, ⇒ 47.88 + 84.07 – 99.95 = 7.86 × ? ⇒ 48 + 84 – 100 = 7.86 × ? ⇒ 132 – 100 = 7.86 × ? ⇒ 32 = 7.86 × ? ⇒ 32 = 8 × ? ⇒ ? = 32/8 = 4 ⇒ ? = 4 |
|
| 45. |
1). 30/72). 57/83). 34/94). 45/8 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(\left[ {\left( {1\frac{2}{3} + 5\frac{6}{2}} \right) \div 29} \right] \times \frac{9}{8} = \left( {12 \times 5\frac{1}{6}} \right) \times \frac{3}{{31}} - ?)$ ⇒ [(5/3 + 16/2) ÷ 29] × 9/8 = (12 × 31/6) × 3/31 - ? ⇒ [(58/6 × 1/29)] × 9/8 = (12 × 31/6) × 3/31 - ? ⇒ 1/3 × 9/8 = (31 × 2) × 3/31 - ? ⇒ 3/8 = 6 - ? ⇒ ? = 6 – 3/8 ⇒ ? = 45/8 |
|
| 46. |
1). 152). 263). 654). 13 |
|
Answer» Approximating the VALUES to the NEAREST integer: 81.49 ≈ 81, 8.88 ≈ 9 and 181.09 ≈ 182 12.77 ≈ 13, 43.74 ≈ 44 and 1.23 ≈ 1 ⇒ (81.49 × 8.88 + 181.09) ÷ 12.77 = 43.74 + 1.23 × ? ⇒ (81 × 9 + 181) ÷ 13 = 44 + 1 × ? ⇒ (729 + 181) ÷ 13 = 44 + 1 × ? ⇒ 910 ÷ 13 = 44 + 1 × ? ⇒ 70 = 44 + 1 × ? ⇒ 1 × ? = 26 ⇒ ? = 26 /1 ⇒ ? ≈ 26 |
|
| 47. |
1). 16/252). 4/53). 1/34). 2/5 |
|
Answer» Given expression: Follow BODMAS rule to solve this question, as PER the order is given below,$ Step - 1 - $Parts of an equation ENCLOSED in 'Brackets' must be solved first,$ Step - 2 - $Any mathematical 'Of' or 'Exponent' must be solved next,$ Step - 3 - $Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated,$ Step - 4 - $Last but not least, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated.$ $(3\FRAC{6}{{17}} \div 2\frac{7}{{34}} - 1\frac{9}{{25}} = {\LEFT( ? \right)^2})$ $(\Rightarrow {\left( ? \right)^2} = \frac{{57}}{{17}} \div \frac{{75}}{{34}} - \frac{{34}}{{25}})$ $(\Rightarrow {\left( ? \right)^2} = \frac{{57}}{{17}} \times \frac{{34}}{{75}} - \frac{{34}}{{25}})$ $(\Rightarrow {\left( ? \right)^2} = \frac{{38}}{{25}} - \frac{{34}}{{25}} = \frac{4}{{25}})$ ⇒ ? = 2/5 or -2/5 Hence, the required answer is 2/5. |
|
| 48. |
1). 252). 153). 344). 65 |
|
Answer» 3017.98 ÷ 2.97 - 292 = 10.92 × ? APPROXIMATING the values to the nearest integer: 1006 – 841 = 11 × (?) 165 = 11 × (?) ? = 165/11 ? = 15 |
|
| 49. |
342 ÷ 6 × 28 = 1099 + ?1). 4782). 5023). 4864). 504 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved FIRST, and in the bracket, the BODMAS rule must be followed, Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, given expression : ⇒ 342 ÷ 6 × 28 = 1099 + ? ⇒ 57 × 28 = 1099 + ? ⇒ 1596 = 1099 + ? ⇒ ? = 1596 – 1099 ⇒ ? = 497 |
|
| 50. |
(12.51)4 = ?1). 223002). 234003). 244154). 25600 |
|
Answer» The GIVEN EXPRESSION, (12.51)4 = ? We can WRITE the given VALUES as, ⇒ 12.51 ≈ 12.5 ⇒ ? = 12.54 ⇒ ? = 24414.0625 ∴ ? ≈ 24415 |
|