Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

1). 152). 18.53). 204). 16.5

Answer»

Given,

$(\Rightarrow \FRAC{{\sqrt {7744}\times 66}}{{203 + 149}} = ?)$

⇒? = (88 × 66)/352

⇒? = (11 × 66)/44(DIVIDING numerator and denominator by 8)

⇒? = 66/4 = 16.5

Hence, the required answer is 16.5
52.

410 × ? × 26 = 67250 + 500101). 112). 143). 164). 22

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step - 1 - Parts of an EQUATION enclosed in the ‘BRACKETS’ must be solved first

Step - 2 - Any mathematical ‘OF’ or ‘EXPONENTS’ must be solved next

Step - 3 - Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step - 4 - Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ 410 × ? × 26 = 67250 + 50010

⇒ 10660 × ? = 117260

⇒ $(?\; = \;\frac{{117260}}{{10660}}\; = \;11)$

53.

Find the value of the expression 9 – {7 – 24 ÷ (8 + 6 × 2 - 16)} 1). 82). -83). 94). 12

Answer»

FOLLOW BODMAS RULE to solve this question, as per the order given below,

Step - 1 - Parts of an equation enclosed in 'Brackets' must be solved first,

Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step - 4 - Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Now, the given expression,

⇒ 9 – {7 – 24 ÷ (8 + 6 × 2 - 16)} = 9 – {7 – 24 ÷ (8 + 12 - 16)}

⇒ 9 – {7 – 24 ÷ (20 - 16)} = 9 – {7 – 24 ÷ 4} = 9 – {7 – 6}

⇒ 9 – 1 = 8

54.

1). \(1\frac{{65}}{{84}}\)2). \(8\frac{1}{{84}}\)3). \(2\frac{{79}}{{84}}\)4). \(5\frac{{47}}{{84}}\)

Answer»

We have the expression

$(\begin{array}{l} 3\frac{6}{7} - 6\frac{1}{4} + 5\frac{1}{3} = ?\\ \Rightarrow \frac{{21\; + \;6}}{7} - \frac{{24\; + \;1}}{4} + \frac{{15\; + \;1}}{3} = ?\\ \Rightarrow \frac{{27}}{7} - \frac{{25}}{4} + \frac{{16}}{3} = ? \end{array})$

LCM of 7, 4 and 3 is 84

$(\begin{array}{l} \Rightarrow \frac{{27\; \times 12}}{{84}} - \frac{{25\; \times 21}}{{84}} + \frac{{16\; \times 28}}{{84}} = ?\\ \Rightarrow \frac{{324 - 525 + 448}}{{84}} = ? \end{array})$

⇒ ? = 247/84

$(\Rightarrow ?{\rm{\;}} = {\rm{\;}}2\frac{{79}}{{84}})$
55.

1). 252). 53). 264). 9

Answer»

348 ÷ 29 × 16 + 144 = (?)3 + 211

12 × 16 + 144 = (?)3 + 211

⇒ (?)3 = 192 + 144 - 211

⇒ (?)3 = 125

⇒ ? = 5

56.

1). 2452). 5373). 4584).

Answer»

Given expression:

76% of 1285 = 35% of 1256 +?

$(\Rightarrow \FRAC{{76}}{{100}} \TIMES 1285 = \frac{{35}}{{100}} \times 1256 + ?)$

⇒ ? = 976.6 - 439.6 = 537

57.

1). 252). 53). 24). 0.5

Answer»

Follow BODMAS rule to SOLVE this question, as per the order given below,

Step-1: Parts of an equation enclosed in 'Brackets' must be SOLVED first, and in the BRACKET,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given EXPRESSION is,

⇒ {(81 + 17 × 2) ÷ 5} + 2 = (?)2

⇒ (?)2 = {(81 + 34) ÷ 5} + 2

⇒ (?)2 = (115 ÷ 5) + 2

⇒ (?)2 = 23 + 2

⇒ (?)2 = 25

⇒ (?)2 = 52

⇒ ? = 5

58.

Find the value of the expression 5 × 2 – [3 – {5 – (7 + 2 of 4 - 19)}]1). 152). 123). 54). 16

Answer»

Follow BODMAS rule to SOLVE this question, as per the order given below,

Step - 1 - Parts of an equation enclosed in 'Brackets' must be solved first,

Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step - 4 - LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated

5 × 2 – [3 – {5 – (7 + 2 of 4 - 19)}] = 5 × 2 – [3 – {5 – (7 + 8 - 19)}] = 5 × 2 – [3 – {5 – (15 - 19)}]

⇒ 5 × 2 – [3 – {5 – ( - 4)}] = 5 × 2 – [3 – {5 + 4}] = 5 × 2 – [3 – 9] = 5 × 2 – [ - 6] = 10 + 6 = 16.
59.

1). 232). -113). -54). 12

Answer»

 

⇒ ? = (3 × 5) % of 20 - 18 ÷ 2 + 1

⇒ ? = 15% of 20 - 18 ÷ 2 + 1

⇒ ? = 15/100 × 20 - 18 ÷ 2 + 1

⇒ ? = 3 - 9 + 1

⇒ ? = 4 - 9 = -5

∴ ? = -5

60.

1). 22). 43). 1254). 3

Answer»

Follow BODMAS rule to solve this QUESTION, as per the order given below,

Step 1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step 2: Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step 3: Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step 4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ {(7999 + 2001) ÷ 4} × 0.05 = (5)?

⇒ (10000 ÷ 4) × 0.05 = (5)?

⇒ (2500 × 0.05) = (5)?

⇒ 125 = (5)?

⇒ 53 = 5?

⇒ ? = 3

61.

√1224 × 12.06 + √4897 - (18.98)2 = ?1). 1202). 1103). 1254). 129

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1 - PARTS of an equation ENCLOSED in 'Brackets' must be SOLVED first, and in the bracket,

Step-2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

√1224 × 12.06 + √4897 - (18.98)2 = ?

Taking Approximate values as,

 √1224 ≈ √1225, 12.06 ≈ 12, √4897 ≈ √4900, (18.98)2 ≈ (19)2

⇒ √1225 × 12 + √4900 - (19)2 = ?

⇒ 35 × 12 + 70 - 361 = ?

∴ ? = 129
62.

1). 40/1432). 36/1433). 14/1434). 22/143

Answer»

Given expression is

$(\begin{array}{l} \RIGHTARROW \frac{{37 \times 7 - 29 \times 5}}{{{7^2} + \sqrt {169} + {{\LEFT( 9 \right)}^2}}} = ?\\ \Rightarrow \frac{{259 - 145}}{{49 + 13 + 81}} = ? \end{array})$

⇒ ?= 114/143
63.

1). 49.92). 103). 9984). 1/5

Answer»

99.8/9.98 = 499/?

10 = 499/?

⇒ ? = 499/10 = 49.9

64.

1). 49452). 49353). 49554). 4975

Answer»

According to the BODMAS rule, the PRIORITY in which the operations should be done is:

Operations

Symbols

B-Bracket

()

O-Of

Of

D-Division

÷, /

M-Multiplication

×

A-Addition

+

S-Subtraction

-

 

⇒ 902.91 ÷ (13.98 ÷ 2.05) × 35.02 = (?) - 399.85

Approximating the values to the nearest integer:

400 + 903 ÷ (14 ÷ 2) × 35 = (?)

(?) = 400 + 903 ÷ (7) × 35 

(?) = 400 + 903 × 1/7 × 35 

(?) = 400 + 903 × 5 

(?) = 400 + 4515 

(?) = 4915

65.

16865 + 22473 + 31045 – 70102 = ?1). 4852). 2803). 2814). 845

Answer»

GIVEN expression,

16865 + 22473 + 31045 – 70102 = ?

⇒ ? = 70383 – 70102

⇒ ? = 281
66.

14.8957 × 6.1231 - 7.8888 × 11.111 + 1.0039 = ?1). 12). 23). 34). 4

Answer»

14.8957 × 6.1231 - 7.8888 × 11.111 + 1.0039 = ?

TAKING their approx. values

[15 × 6 - 8 × 11 + 1] = ?

⇒ ? = 90 - 88 + 1

⇒ ? = 91 - 88

∴ ? = 3
67.

1). -112). -103). 104). -20

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1- Parts of an equation ENCLOSED in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given EXPRESSION is,

⇒ 38 + (32 - 50) ÷ 9 × 7 of 3 - {78 ÷ (9+ 4)} =?

⇒ 38 + (-18) ÷ 9 × 7 of 3 - {78 ÷ 13} =?

⇒ 38 + (-18) ÷ 9 × 7 of 3 - 6 =?

⇒ 38 + (-18) ÷ 9 × 21 – 6 =?

⇒ 38 + (-2) × 21 – 6 =?

⇒ 38 - 42 – 6 =?

⇒ -10

Hence, the required answer is -10

68.

1). 12002). 1003). 750 4). 1400

Answer»

In this type of question, we are expected to calculate Approximate value (not exact value), so we can replace the given numbers by their nearest perfect places which makes the calculation easy.

We can write the given values as:

89898 ≈ 9 × 10000

2.486 ≈ 2.5

Now the given EXPRESSION will be transformed as:

$(\begin{array}{l} \SQRT {89898} \times 2.486 = ?\\ \RIGHTARROW ? \approx \sqrt {9 \times 10000} \times 2.486 \end{array})$

⇒ ? ≈ 3 × 100 × 2.5

⇒ ? ≈ 750
69.

Pie A is said to have 20.5 calories, pie B is said to contain 30.5 calories while pie C is said to have just 10 calories. If a man ate 3 quarters of pie A ,one tenth of the pie B and a quarter of pie C then how much calories did he intake in total(4 quarters = 1 full pie).1). 20.9522). 20.9253). 15.3754). 15.753

Answer»

TOTAL AMOUNT of calorie intake =CALORIES from PIE A + Calories from Pie B + Calories from Pie C

⇒ Total amount of calorie = (20.5)(0.25 × 3) + (30.5)(0.1) + (10)(0.25)

⇒ Total amount of calorie = (20.5)(0.75) + (30.5)(0.1) + (10)(0.25)

⇒ Total amount of calorie = 15.375 + 3.05 + 2.5 = 20.925

∴ The man had 20.925 calories in total.
70.

38952 – 15631 + 10890 = ?1). 332112). 352713). 332914). 34211

Answer»

The GIVEN expression:

38952 – 15631 + 10890

⇒ 23321 + 10890 = 34211

71.

88% of 650 + ? = 6001). 262). 383). 364). 28

Answer»

GIVEN expression:

88% of 650 + ? = 600

$(\Rightarrow \frac{{88}}{{100}}\; \TIMES \;650\; + \;?\; = \;600)$

572 + ? = 600

⇒ ? = 600 – 572

⇒ ? = 28
72.

√1850 × √1160 ÷ √290 = ? × 7 - 121). 152). 143). 174). 686

Answer»

Follow BODMAS rule to solve this QUESTION, as per the order given below,

Step-1 - Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket,

Step-2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

√1850 × √1160 ÷ √290 = ? × 7 - 12

Taking Approximate values,

√1850 ≈ √1849, √1160 ≈ √1156, √290 ≈ √289

⇒ 43 × 34 ÷ 17 = ? × 7 - 12

⇒ 7 × ? = 86 + 12 = 98

∴ ? = 14
73.

1). 962). 1003). 1204). 92

Answer»

7 + 36 = 39 + 100 - ?

? = 96

74.

1). 41/802). 2/13). -1/24). -41/80

Answer»

$(\begin{array}{L} 3 - \left( {\frac{1}{5} + 1 \DIV \frac{1}{2}} \right) - \left[ {\left\{ {\frac{4}{2} - \frac{3}{2}} \right\} + 1} \right] \TIMES \frac{7}{8}\\ = 3 - \left( {\frac{1}{5} + 1 \div \frac{1}{2}} \right) - \left[ {\frac{1}{2} + 1} \right] \times \frac{7}{8}\\ = 3 - \left( {\frac{1}{5} + 2} \right) - \frac{3}{2} \times \frac{7}{8}\\ = 3 - \frac{{10 + 1}}{5} - \frac{{21}}{{16}}\\ = \frac{{3 \times 80 - 11 \times 16 - 21 \times 5}}{{80}}\\ = \frac{{240 - 176 - 105}}{{80}} \end{array})$

= -41/80

75.

(5.01)3 × (48.98)2 ÷ (35.01)4 = x21). √52). 1/√53). 1/74). √(7/5)

Answer»

⇒ (5.01)3 × (48.98)2 ÷ (35.01)4 = x2

⇒ x2 = 53 × 492 ÷ 354

⇒ x2 = 53 × (72)2 ÷ (7 × 5)4

⇒ x2 = 1/5

⇒ x = 1/√
76.

1). 2/42). 3/53). 1/24). 10

Answer»

81/90 × 10/3 × 9/18 × 2/5

= $(\frac{{81{\RM{\;}} \TIMES {\rm{\;}}10{\rm{\;}} \times {\rm{\;}}9{\rm{\;}} \times {\rm{\;}}2}}{{90{\rm{\;}} \times {\rm{\;}}3{\rm{\;}} \times {\rm{\;}}18{\rm{\;}} \times {\rm{\;}}5}})$

= $(\frac{{81{\rm{\;}} \times {\rm{\;}}9{\rm{\;}} \times {\rm{\;}}2}}{{9{\rm{\;}} \times {\rm{\;}}3{\rm{\;}} \times {\rm{\;}}18{\rm{\;}} \times {\rm{\;}}5}})$

= $(\frac{{27{\rm{\;}} \times {\rm{\;}}2}}{{18{\rm{\;}} \times {\rm{\;}}5}})$

= $(\frac{{3\; \times \;2}}{{2\; \times \;5}})$

= 6/10 = 3/5

77.

(21)2 – 3717 ÷ 59 = ? × 121). 31.752). 31.253). 32.54). 31.5

Answer»

Follow BODMAS rule to solve this question, as PER the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, the BODMAS rule must be followed,

Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next,

Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED,

Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

(21)2 – 3717 ÷ 59 = ? × 12

441 – 3717 ÷ 59 = ? × 12

⇒ 441 – 63 = ? × 12

⇒ 378 = ? × 12

⇒ ? = 31.5
78.

207 ÷ 3 × 2.25 + 43.5 – 9 = ?1). 136.452). 123.853). 142.954). 189.75

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step - 1 - PARTS of an equation ENCLOSED in the ‘BRACKETS’ MUST be solved first

Step - 2 - Any mathematical ‘OF’ or ‘EXPONENTS’ must be solved NEXT

Step - 3 - Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step - 4 - LAST but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ 207 ÷ 3 × 2.25 + 43.5 – 9 = ?

⇒ 69 × 2.25 + 43.5 – 9 = ?

⇒ 155.25 + 43.5 – 9 = ?

⇒ 198.75 – 9 = ?

⇒ 189.75 = ?

79.

(3a + 1 9a + 2 27a)÷ (3a - 1 9a 27a + 1) = ?1). 12). 93). 274). 3

Answer»

Solve the given QUESTION, using following laws of indices,

Laws of Indices,

1-: am × an = a{m + n}

2-: am ÷ an = a{m - n}

3-: [(am)n] = amn

4-: (a)1/m = $(\sqrt[m]{a})$

5-: (a)-m = 1/am

6-: (a)(m/n) = $(\sqrt[n]{{{a^m}}})$

7-: a0 = 1

$(\begin{array}{L} \Rightarrow \frac{{{3^{a + 1}}\;{9^{a + 2}}\;{{27}^a}}}{{{3^{a - 1}}\;{9^a}\;{{27}^{a + 1}}}} = {\rm{\;}}?\\ \Rightarrow ? = \frac{{{3^{a + 1}}\;{3^{2\left( {a + 2} \right)}}\;{3^{3a}}}}{{{3^{a - 1}}\;{3^{2a}}\;{3^{3\left( {a + 1} \right)}}}}\\ \Rightarrow ? = \frac{{\;{3^{6a + 5}}}}{{{3^{6a + 2}}}} \end{array})$

⇒ ? = 33

⇒ ? = 27
80.

937 + (9)3 ÷ 27 × (3)4 = ?1). 33852). 31243). 32764). 3390

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation enclosed in the ‘BRACKETS’ MUST be solved first

Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next

Step-3: Next the part of the equation that CONTAINS ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step-4: LAST but not LEAST, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ 937 + (9)3 ÷ 27 × (3)4 = ?

$(\Rightarrow 937\; + \;\frac{{{{\left( 9 \right)}^3}}}{{27}}\; \times \;{3^{4\;}}\; = \;?)$

⇒ 937 + (9)3 × 3 = ?

⇒ 937 + 729 × 3 = ?

⇒ 937 + 2187 = ?

⇒ 3124 = ?
81.

(8.758 × 56) ÷ 16 - 1230 ÷ 240 = ? × 5.781). 2.4762). 5.2653). 4.4174). 6.489

Answer»

(8.758 × 56) ÷ 16 - 1230 ÷ 240 = ? × 5.78

⇒ 490.448 ÷ 16 - 1230 ÷ 240 = ? × 5.78

⇒ 30.653 - 5.125 = ? × 5.78

⇒ 25.528 ÷ 5.78 = ?

∴ ? = 4.417
82.

1). 22). 3.53). 34). 29/6

Answer»

GIVEN expression is,

$(\RIGHTARROW 13\frac{1}{3}\div 6\frac{2}{3} + 5\frac{5}{6} \TIMES \frac{3}{7} - 37.5\% \;of\;\frac{8}{3} = \;?)$

$(\Rightarrow \frac{{40}}{3} \times \frac{3}{{20}} + \frac{{35}}{6} \times \frac{3}{7} - \frac{3}{8}\; \times \frac{8}{3} = \;?)$

⇒ 2 + 2.5 – 1 = ?

∴ ? = 3.5

83.

4497 × 1204 ÷ 1795 – 2337 = ?1). 6602). 7003). 9504). 850

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step - 1 - PARTS of an equation enclosed in 'Brackets' must be solved first, and in the BRACKET, the BODMAS rule must be followed,

Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

4497 × 1204 ÷ 1795 – 2337 = ?

USING approximation,

⇒ 4500 × (1200 ÷ 1800) – 2340 = ?

⇒ 4500 × (2/3) – 2340 = ?

⇒ 3000 – 2340 = ?

⇒ 660 = ?

∴ ? = 660
84.

(3584 ÷ 32) – 11 = √?1). 100212). 120013). 102214). 10201

Answer»

Follow BODMAS rule to SOLVE this question, as per the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED,

Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

(3584 ÷ 32) – 11 = √?

⇒ 112 – 11 = √?

⇒ 101 = √?

⇒ ? = 101 × 101

∴ ? = 10201
85.

41.25 + 11.085 × 2.75 = ?1). 982). 1023). 124). 48

Answer»

GIVEN expression:

41.25 + 11.085 × 2.75 =?

⇒ ? = 41.25 + 30.48

⇒ ? = 71.73

⇒ ? ≈ 72

Hence, the REQUIRED ANSWER in PLACE of question mark is 72.
86.

(181 × 5 + 277) ÷ 6 + 43 = 11 × ? - 461). 382). 183). 194). 22

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ (181 × 5 + 277) ÷ 6 + 43 = 11 × ? - 46

⇒ (905 + 277) ÷ 6 + 43 = 11 × ? - 46

⇒ 1182 ÷ 6 + 43 = 11 × ? - 46

⇒ 197 + 43 = 11 × ? - 46

⇒ 240 = 11 × ? - 46

⇒ 240 + 46 = 11 × ?

⇒ 286 = 11 × ?

⇒ ? = 286 / 11

⇒ ? = 26
87.

√(6 + 4√2) = ?1). -√2 - 22). √2 + 23). √2 - 24). -√2 + 2

Answer»

6 + 42 = 2 + 4 + (2 × 2 × √ 2)

⇒ 6 + 4√2 = (2 + √2)2

∴ √(6 + 4√2) = 2 + √2
88.

1/17 × ∛4913.28 + 25% of 401% of 300.008 + 1/13.0008 × ∛2197.0008 = ?1). 3022). 4443). 3334). 781

Answer»

1/17 × ?4913.28 + 25% of 401% of 300.008 + 1/13.0008 × ?2197.0008 = ?

It can be APPROXIMATED as

1/17 × ?4913 + 25% of 400% of 300 + 1/13 × ?2197 = ?

⇒ 1/17 × 17 + 1/4 × 4 × 300 + 1/13 × 13 = ?

⇒ 1 + 300 + 1 = ?

⇒ 302 = ?
89.

1). 14682). 15383). 14584). 1358

Answer»

Follow BODMAS rule to solve this QUESTION, as PER the order given below,

Step 1: PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step 2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step 3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step 4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ 11199 – 5666 + 999 = 8000 - ?

⇒ 12198 – 5666 = 8000 - ?

⇒ 6532 = 8000 - ?

⇒ ? = 1468

90.

268.875 ÷ 8.835 × 24.105 = ?1). 7202). 8003). 7004). 820

Answer»

We are expected to calculate the approximate VALUE and not the EXACT value.

∴ the given numbers can be approximated as follows:

268.875 ≈ 270

8.835 ≈ 9

24.105 ≈ 24

∴ The given EXPRESSION becomes,

270 ÷ 9 × 24 = 30 × 24 = 720 = ?
91.

65893 + 47630 =? + 746291). 388922). 388903). 388954). 38893

Answer»

GIVEN EXPRESSION:

⇒ 65893 + 47630 =? + 74629

⇒ 65893 + 47630 – 74629 = ?

⇒ ? = 113523 – 74629 = 38894

Hence the ANSWER is 38894
92.

(9)8.5 × (81)7.5 ÷ (243)-3 = 9?1). 352). 363). 324). 31

Answer»

Given EXPRESSION:

(9)8.5 × (81)7.5 ÷ (243)-3 = 9?

⇒ (3)17 × (3)30 ÷ (3)-15 = 9?

⇒ (3)17 + 30 ÷ (3)-15 = 9?

⇒ (3)47 - (-15) = 9?

⇒ (3)62 = 9?

⇒ (9)31 = 9?

⇒ ? = 31
93.

(51.01 ÷ 16.84) + 20.90 = 35.85 - ?1). 202). 483). 124). 11

Answer»

Follow BODMAS RULE to solve this question, as PER the order given below,

Step-1- PARTS of an equation enclosed in ‘Brackets’ must be solved first, and in the bracket,

Step-2- Any mathematical ‘Of’ or ‘EXPONENT’ must be solved next,

Step-3- Next, the parts of the equation that contain ‘Division’ and ‘MULTIPLICATION’ are calculated,

Step-4- Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated.

Given expression is,

(51.01 ÷ 16.84) + 20.90 = 35.85 - ?

We can write the given values as:

51.01 ≈ 51 and 16.84 ≈ 17

20.90 ≈ 21 and 35.85 ≈ 36

Then,

⇒ (51 ÷ 17) + 21 = 36 - ?

⇒ 3 + 21 = 36 - ?

⇒ 24 = 36 - ?

⇒ ? = 36 - 24

⇒ ? ≈ 12
94.

45.98 + (4500 ÷ 122) − 8.75 × 12 + 36.101 × 1.499 = ?1). 322). -103). -224). 4

Answer»

45.98 + (4500 ÷ 122) − 8.75 × 12 + 36.101 × 1.499

Approximating values to the closest integers and solving

= 46 + 36.88 − 105 + 36 × 1.5

= 46 + 37 − 105 + 54

= 135108

= 32
95.

(28.20 × 7.91) ÷ (8.01% of 700) = 70.02 × 1.89 ÷ ?1). 152). 353). 554). 52

Answer»

Follow BODMAS rule to solve this question, as per the order GIVEN below,

Step-1- Parts of an equation ENCLOSED in 'Brackets' MUST be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ (28.20 × 7.91) ÷ (8.01% of 700) = 70.02 × 1.89 ÷ ?

We can write the given values as:

⇒ 28.20 ≈28 and 7.91 ≈ 8 and 8.01 ≈ 8

⇒ 70.02 ≈ 70 and 1.89 ≈ 9

Then,

⇒ (28 × 8) ÷ (8% of 700) = 70 × 2 ÷ ?

⇒ (224) ÷ [(8/100) × 700] = 70 × 2 ÷ ?

⇒ (224) ÷ (56) = 70 × 2 ÷ ?

⇒ 4 = 70 × 2 ÷ ?

⇒ 4/70 = 2/?

⇒ ? × 4 = 2 × 70

⇒ ? = 140/4

∴ ? ≈ 35
96.

35% of 250 + ? = 3451). 257.502). 305.503). 235.254). 255.75

Answer»

GIVEN EXPRESSION is,

35% of 250 + ? = 345

$(\FRAC{{35}}{{100}} \times 250 + \;? = 345)$

$(\Rightarrow \frac{{35}}{{100}} \times 250 + \;? = 345)$

⇒ 87.5 + ? = 345

⇒ ? = 345 – 87.5 = 257.5
97.

(91.87 + 118.10) ÷ 14.20 = 90.08 - 14.88% of ?1). 502). 3003). 3904). 450

Answer»

Given expression is,

(91.87 + 118.10) ÷ 14.20 = 90.08 - 14.88 % of ?

We can write the given values as:

91.87 ≈ 92 and 118.10 ≈ 118

14.20 ≈ 14 and 90.08 ≈ 90 and 14.88 ≈ 15

Then,

⇒ (92 + 118) ÷ 14 = 90 - 15% of ?

⇒ (92 + 118) ÷ 14 = 90 - [(15/100) × ?]

⇒ 210 ÷ 14 = 90 - [15?/100]

⇒ 15 = 90 - (15?/100)

⇒ (15?/100) = 90 - 15

⇒ (15?/100) = 75

⇒ 15? = 75 × 100

⇒ ? = 7500/15

⇒ ? ≈ 500
98.

47% of 600 + ?% of 300 = 3991). 452). 413). 424). 39

Answer»

The given expression:

47% of 600 + ?% of 300 = 399

$(\Rightarrow \frac{{47}}{{100}} \times 600 + \frac{?}{{100}} \times 300 = 399)$

⇒ (47 × 6) + (? × 3) = 399

⇒ 282 + (? × 3) = 399

⇒ (? × 3) = 399 – 282

⇒ ? = 117 ÷ 3 = 39
99.

1). 35.862). 31.863). 33.864). 34.86

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

$(45{\RM{\% \;of}}\SQRT {\LEFT( {255\; \div \;34\; \times \;146 - 6} \right)}+ \frac{7}{{12}}of\;{\left( {5.4} \right)^2}\; = \;?)$

Applying BODMAS Rule;

⇒ $(45{\rm{\% \;of}}\sqrt {\left( {7.5 \times 146 - 6\;} \right)}+ \frac{7}{{12}}of\;{\left( {5.4} \right)^2} = ?)$

⇒ $(45{\rm{\% \;of}}\sqrt {\left( {1089} \right)}+ \frac{7}{{12}}of\;29.16 = ?)$

⇒ 45% of 33 + 17.01 = ?

⇒ 14.85 + 17.01 = ?

∴ ? = 31.86
100.

1). 102). 163). 84). 5

Answer»

$(294.01 \times \frac{X}{{7.01}} - 9.99\% \;of\;129.99\;x\; = \;231.99\; \div \;0.99)$

⇒ 294x/7 - 10% of 130x = 232 ÷ 1

⇒ 42x - 13X = 232

⇒ 29x = 232

⇒ x = 8