InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
1). 152). 18.53). 204). 16.5 |
|
Answer» Given, $(\Rightarrow \FRAC{{\sqrt {7744}\times 66}}{{203 + 149}} = ?)$ ⇒? = (88 × 66)/352 ⇒? = (11 × 66)/44(DIVIDING numerator and denominator by 8) ⇒? = 66/4 = 16.5 Hence, the required answer is 16.5 |
|
| 52. |
410 × ? × 26 = 67250 + 500101). 112). 143). 164). 22 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step - 1 - Parts of an EQUATION enclosed in the ‘BRACKETS’ must be solved first Step - 2 - Any mathematical ‘OF’ or ‘EXPONENTS’ must be solved next Step - 3 - Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step - 4 - Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ 410 × ? × 26 = 67250 + 50010 ⇒ 10660 × ? = 117260 ⇒ $(?\; = \;\frac{{117260}}{{10660}}\; = \;11)$ |
|
| 53. |
Find the value of the expression 9 – {7 – 24 ÷ (8 + 6 × 2 - 16)} 1). 82). -83). 94). 12 |
|
Answer» FOLLOW BODMAS RULE to solve this question, as per the order given below, Step - 1 - Parts of an equation enclosed in 'Brackets' must be solved first, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step - 4 - Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, ⇒ 9 – {7 – 24 ÷ (8 + 6 × 2 - 16)} = 9 – {7 – 24 ÷ (8 + 12 - 16)} ⇒ 9 – {7 – 24 ÷ (20 - 16)} = 9 – {7 – 24 ÷ 4} = 9 – {7 – 6} ⇒ 9 – 1 = 8 |
|
| 54. |
1). \(1\frac{{65}}{{84}}\)2). \(8\frac{1}{{84}}\)3). \(2\frac{{79}}{{84}}\)4). \(5\frac{{47}}{{84}}\) |
|
Answer» We have the expression $(\begin{array}{l} 3\frac{6}{7} - 6\frac{1}{4} + 5\frac{1}{3} = ?\\ \Rightarrow \frac{{21\; + \;6}}{7} - \frac{{24\; + \;1}}{4} + \frac{{15\; + \;1}}{3} = ?\\ \Rightarrow \frac{{27}}{7} - \frac{{25}}{4} + \frac{{16}}{3} = ? \end{array})$ LCM of 7, 4 and 3 is 84 $(\begin{array}{l} \Rightarrow \frac{{27\; \times 12}}{{84}} - \frac{{25\; \times 21}}{{84}} + \frac{{16\; \times 28}}{{84}} = ?\\ \Rightarrow \frac{{324 - 525 + 448}}{{84}} = ? \end{array})$ ⇒ ? = 247/84 $(\Rightarrow ?{\rm{\;}} = {\rm{\;}}2\frac{{79}}{{84}})$ |
|
| 55. |
1). 252). 53). 264). 9 |
|
Answer» ⇒ 348 ÷ 29 × 16 + 144 = (?)3 + 211 ⇒ 12 × 16 + 144 = (?)3 + 211 ⇒ (?)3 = 192 + 144 - 211 ⇒ (?)3 = 125 ⇒ ? = 5 |
|
| 56. |
1). 2452). 5373). 4584). |
|
Answer» Given expression: $(\Rightarrow \FRAC{{76}}{{100}} \TIMES 1285 = \frac{{35}}{{100}} \times 1256 + ?)$ ⇒ ? = 976.6 - 439.6 = 537 |
|
| 57. |
1). 252). 53). 24). 0.5 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1: Parts of an equation enclosed in 'Brackets' must be SOLVED first, and in the BRACKET, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given EXPRESSION is, ⇒ {(81 + 17 × 2) ÷ 5} + 2 = (?)2 ⇒ (?)2 = {(81 + 34) ÷ 5} + 2 ⇒ (?)2 = (115 ÷ 5) + 2 ⇒ (?)2 = 23 + 2 ⇒ (?)2 = 25 ⇒ (?)2 = 52 ⇒ ? = 5 |
|
| 58. |
Find the value of the expression 5 × 2 – [3 – {5 – (7 + 2 of 4 - 19)}]1). 152). 123). 54). 16 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step - 1 - Parts of an equation enclosed in 'Brackets' must be solved first, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step - 4 - LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated 5 × 2 – [3 – {5 – (7 + 2 of 4 - 19)}] = 5 × 2 – [3 – {5 – (7 + 8 - 19)}] = 5 × 2 – [3 – {5 – (15 - 19)}] ⇒ 5 × 2 – [3 – {5 – ( - 4)}] = 5 × 2 – [3 – {5 + 4}] = 5 × 2 – [3 – 9] = 5 × 2 – [ - 6] = 10 + 6 = 16. |
|
| 59. |
1). 232). -113). -54). 12 |
|
Answer»
⇒ ? = (3 × 5) % of 20 - 18 ÷ 2 + 1 ⇒ ? = 15% of 20 - 18 ÷ 2 + 1 ⇒ ? = 15/100 × 20 - 18 ÷ 2 + 1 ⇒ ? = 3 - 9 + 1 ⇒ ? = 4 - 9 = -5 ∴ ? = -5 |
|
| 60. |
1). 22). 43). 1254). 3 |
|
Answer» Follow BODMAS rule to solve this QUESTION, as per the order given below, Step 1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step 2: Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step 3: Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step 4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ {(7999 + 2001) ÷ 4} × 0.05 = (5)? ⇒ (10000 ÷ 4) × 0.05 = (5)? ⇒ (2500 × 0.05) = (5)? ⇒ 125 = (5)? ⇒ 53 = 5? ⇒ ? = 3 |
|
| 61. |
√1224 × 12.06 + √4897 - (18.98)2 = ?1). 1202). 1103). 1254). 129 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1 - PARTS of an equation ENCLOSED in 'Brackets' must be SOLVED first, and in the bracket, Step-2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step-3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, √1224 × 12.06 + √4897 - (18.98)2 = ? Taking Approximate values as, √1224 ≈ √1225, 12.06 ≈ 12, √4897 ≈ √4900, (18.98)2 ≈ (19)2 ⇒ √1225 × 12 + √4900 - (19)2 = ? ⇒ 35 × 12 + 70 - 361 = ? ∴ ? = 129 |
|
| 62. |
1). 40/1432). 36/1433). 14/1434). 22/143 |
|
Answer» Given expression is $(\begin{array}{l} \RIGHTARROW \frac{{37 \times 7 - 29 \times 5}}{{{7^2} + \sqrt {169} + {{\LEFT( 9 \right)}^2}}} = ?\\ \Rightarrow \frac{{259 - 145}}{{49 + 13 + 81}} = ? \end{array})$ ⇒ ?= 114/143 |
|
| 64. |
1). 49452). 49353). 49554). 4975 |
||||||||||||||
|
Answer» According to the BODMAS rule, the PRIORITY in which the operations should be done is:
⇒ 902.91 ÷ (13.98 ÷ 2.05) × 35.02 = (?) - 399.85 Approximating the values to the nearest integer: ⇒ 400 + 903 ÷ (14 ÷ 2) × 35 = (?) (?) = 400 + 903 ÷ (7) × 35 (?) = 400 + 903 × 1/7 × 35 (?) = 400 + 903 × 5 (?) = 400 + 4515 (?) = 4915 |
|||||||||||||||
| 65. |
16865 + 22473 + 31045 – 70102 = ?1). 4852). 2803). 2814). 845 |
|
Answer» GIVEN expression, 16865 + 22473 + 31045 – 70102 = ? ⇒ ? = 70383 – 70102 ⇒ ? = 281 |
|
| 66. |
14.8957 × 6.1231 - 7.8888 × 11.111 + 1.0039 = ?1). 12). 23). 34). 4 |
|
Answer» 14.8957 × 6.1231 - 7.8888 × 11.111 + 1.0039 = ? TAKING their approx. values [15 × 6 - 8 × 11 + 1] = ? ⇒ ? = 91 - 88 ∴ ? = 3 |
|
| 67. |
1). -112). -103). 104). -20 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation ENCLOSED in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given EXPRESSION is, ⇒ 38 + (32 - 50) ÷ 9 × 7 of 3 - {78 ÷ (9+ 4)} =? ⇒ 38 + (-18) ÷ 9 × 7 of 3 - {78 ÷ 13} =? ⇒ 38 + (-18) ÷ 9 × 7 of 3 - 6 =? ⇒ 38 + (-18) ÷ 9 × 21 – 6 =? ⇒ 38 + (-2) × 21 – 6 =? ⇒ 38 - 42 – 6 =? ⇒ -10 Hence, the required answer is -10 |
|
| 68. |
1). 12002). 1003). 750 4). 1400 |
|
Answer» In this type of question, we are expected to calculate Approximate value (not exact value), so we can replace the given numbers by their nearest perfect places which makes the calculation easy. We can write the given values as: 89898 ≈ 9 × 10000 2.486 ≈ 2.5 Now the given EXPRESSION will be transformed as: $(\begin{array}{l} \SQRT {89898} \times 2.486 = ?\\ \RIGHTARROW ? \approx \sqrt {9 \times 10000} \times 2.486 \end{array})$ ⇒ ? ≈ 750 |
|
| 69. |
Pie A is said to have 20.5 calories, pie B is said to contain 30.5 calories while pie C is said to have just 10 calories. If a man ate 3 quarters of pie A ,one tenth of the pie B and a quarter of pie C then how much calories did he intake in total(4 quarters = 1 full pie).1). 20.9522). 20.9253). 15.3754). 15.753 |
|
Answer» TOTAL AMOUNT of calorie intake =CALORIES from PIE A + Calories from Pie B + Calories from Pie C ⇒ Total amount of calorie = (20.5)(0.25 × 3) + (30.5)(0.1) + (10)(0.25) ⇒ Total amount of calorie = (20.5)(0.75) + (30.5)(0.1) + (10)(0.25) ⇒ Total amount of calorie = 15.375 + 3.05 + 2.5 = 20.925 ∴ The man had 20.925 calories in total. |
|
| 70. |
38952 – 15631 + 10890 = ?1). 332112). 352713). 332914). 34211 |
|
Answer» The GIVEN expression: 38952 – 15631 + 10890 ⇒ 23321 + 10890 = 34211 |
|
| 71. |
88% of 650 + ? = 6001). 262). 383). 364). 28 |
|
Answer» GIVEN expression: $(\Rightarrow \frac{{88}}{{100}}\; \TIMES \;650\; + \;?\; = \;600)$ ⇒ 572 + ? = 600 ⇒ ? = 600 – 572 ⇒ ? = 28 |
|
| 72. |
√1850 × √1160 ÷ √290 = ? × 7 - 121). 152). 143). 174). 686 |
|
Answer» Follow BODMAS rule to solve this QUESTION, as per the order given below, Step-1 - Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket, Step-2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step-3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, √1850 × √1160 ÷ √290 = ? × 7 - 12 Taking Approximate values, √1850 ≈ √1849, √1160 ≈ √1156, √290 ≈ √289 ⇒ 43 × 34 ÷ 17 = ? × 7 - 12 ⇒ 7 × ? = 86 + 12 = 98 ∴ ? = 14 |
|
| 74. |
1). 41/802). 2/13). -1/24). -41/80 |
|
Answer» $(\begin{array}{L} 3 - \left( {\frac{1}{5} + 1 \DIV \frac{1}{2}} \right) - \left[ {\left\{ {\frac{4}{2} - \frac{3}{2}} \right\} + 1} \right] \TIMES \frac{7}{8}\\ = 3 - \left( {\frac{1}{5} + 1 \div \frac{1}{2}} \right) - \left[ {\frac{1}{2} + 1} \right] \times \frac{7}{8}\\ = 3 - \left( {\frac{1}{5} + 2} \right) - \frac{3}{2} \times \frac{7}{8}\\ = 3 - \frac{{10 + 1}}{5} - \frac{{21}}{{16}}\\ = \frac{{3 \times 80 - 11 \times 16 - 21 \times 5}}{{80}}\\ = \frac{{240 - 176 - 105}}{{80}} \end{array})$ = -41/80 |
|
| 75. |
(5.01)3 × (48.98)2 ÷ (35.01)4 = x21). √52). 1/√53). 1/74). √(7/5) |
|
Answer» ⇒ (5.01)3 × (48.98)2 ÷ (35.01)4 = x2 ⇒ x2 = 53 × 492 ÷ 354 ⇒ x2 = 53 × (72)2 ÷ (7 × 5)4 ⇒ x2 = 1/5 ⇒ x = 1/√ |
|
| 76. |
1). 2/42). 3/53). 1/24). 10 |
|
Answer» = $(\frac{{81{\RM{\;}} \TIMES {\rm{\;}}10{\rm{\;}} \times {\rm{\;}}9{\rm{\;}} \times {\rm{\;}}2}}{{90{\rm{\;}} \times {\rm{\;}}3{\rm{\;}} \times {\rm{\;}}18{\rm{\;}} \times {\rm{\;}}5}})$ = $(\frac{{81{\rm{\;}} \times {\rm{\;}}9{\rm{\;}} \times {\rm{\;}}2}}{{9{\rm{\;}} \times {\rm{\;}}3{\rm{\;}} \times {\rm{\;}}18{\rm{\;}} \times {\rm{\;}}5}})$ = $(\frac{{27{\rm{\;}} \times {\rm{\;}}2}}{{18{\rm{\;}} \times {\rm{\;}}5}})$ = $(\frac{{3\; \times \;2}}{{2\; \times \;5}})$ = 6/10 = 3/5 |
|
| 77. |
(21)2 – 3717 ÷ 59 = ? × 121). 31.752). 31.253). 32.54). 31.5 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. (21)2 – 3717 ÷ 59 = ? × 12 ⇒ 441 – 3717 ÷ 59 = ? × 12 ⇒ 441 – 63 = ? × 12 ⇒ 378 = ? × 12 ⇒ ? = 31.5 |
|
| 78. |
207 ÷ 3 × 2.25 + 43.5 – 9 = ?1). 136.452). 123.853). 142.954). 189.75 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step - 1 - PARTS of an equation ENCLOSED in the ‘BRACKETS’ MUST be solved first Step - 2 - Any mathematical ‘OF’ or ‘EXPONENTS’ must be solved NEXT Step - 3 - Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step - 4 - LAST but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ 207 ÷ 3 × 2.25 + 43.5 – 9 = ? ⇒ 69 × 2.25 + 43.5 – 9 = ? ⇒ 155.25 + 43.5 – 9 = ? ⇒ 198.75 – 9 = ? ⇒ 189.75 = ? |
|
| 79. |
(3a + 1 9a + 2 27a)÷ (3a - 1 9a 27a + 1) = ?1). 12). 93). 274). 3 |
|
Answer» Solve the given QUESTION, using following laws of indices, Laws of Indices, 1-: am × an = a{m + n} 2-: am ÷ an = a{m - n} 3-: [(am)n] = amn 4-: (a)1/m = $(\sqrt[m]{a})$ 5-: (a)-m = 1/am 6-: (a)(m/n) = $(\sqrt[n]{{{a^m}}})$ 7-: a0 = 1 $(\begin{array}{L} \Rightarrow \frac{{{3^{a + 1}}\;{9^{a + 2}}\;{{27}^a}}}{{{3^{a - 1}}\;{9^a}\;{{27}^{a + 1}}}} = {\rm{\;}}?\\ \Rightarrow ? = \frac{{{3^{a + 1}}\;{3^{2\left( {a + 2} \right)}}\;{3^{3a}}}}{{{3^{a - 1}}\;{3^{2a}}\;{3^{3\left( {a + 1} \right)}}}}\\ \Rightarrow ? = \frac{{\;{3^{6a + 5}}}}{{{3^{6a + 2}}}} \end{array})$ ⇒ ? = 33 ⇒ ? = 27 |
|
| 80. |
937 + (9)3 ÷ 27 × (3)4 = ?1). 33852). 31243). 32764). 3390 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation enclosed in the ‘BRACKETS’ MUST be solved first Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next Step-3: Next the part of the equation that CONTAINS ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step-4: LAST but not LEAST, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ 937 + (9)3 ÷ 27 × (3)4 = ? $(\Rightarrow 937\; + \;\frac{{{{\left( 9 \right)}^3}}}{{27}}\; \times \;{3^{4\;}}\; = \;?)$ ⇒ 937 + (9)3 × 3 = ? ⇒ 937 + 729 × 3 = ? ⇒ 937 + 2187 = ? ⇒ 3124 = ? |
|
| 81. |
(8.758 × 56) ÷ 16 - 1230 ÷ 240 = ? × 5.781). 2.4762). 5.2653). 4.4174). 6.489 |
|
Answer» (8.758 × 56) ÷ 16 - 1230 ÷ 240 = ? × 5.78 ⇒ 490.448 ÷ 16 - 1230 ÷ 240 = ? × 5.78 ⇒ 30.653 - 5.125 = ? × 5.78 ⇒ 25.528 ÷ 5.78 = ? ∴ ? = 4.417 |
|
| 82. |
1). 22). 3.53). 34). 29/6 |
|
Answer» GIVEN expression is, $(\RIGHTARROW 13\frac{1}{3}\div 6\frac{2}{3} + 5\frac{5}{6} \TIMES \frac{3}{7} - 37.5\% \;of\;\frac{8}{3} = \;?)$ $(\Rightarrow \frac{{40}}{3} \times \frac{3}{{20}} + \frac{{35}}{6} \times \frac{3}{7} - \frac{3}{8}\; \times \frac{8}{3} = \;?)$ ⇒ 2 + 2.5 – 1 = ? ∴ ? = 3.5 |
|
| 83. |
4497 × 1204 ÷ 1795 – 2337 = ?1). 6602). 7003). 9504). 850 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step - 1 - PARTS of an equation enclosed in 'Brackets' must be solved first, and in the BRACKET, the BODMAS rule must be followed, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 4497 × 1204 ÷ 1795 – 2337 = ? USING approximation, ⇒ 4500 × (1200 ÷ 1800) – 2340 = ? ⇒ 4500 × (2/3) – 2340 = ? ⇒ 3000 – 2340 = ? ⇒ 660 = ? ∴ ? = 660 |
|
| 84. |
(3584 ÷ 32) – 11 = √?1). 100212). 120013). 102214). 10201 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, (3584 ÷ 32) – 11 = √? ⇒ 112 – 11 = √? ⇒ 101 = √? ⇒ ? = 101 × 101 ∴ ? = 10201 |
|
| 85. |
41.25 + 11.085 × 2.75 = ?1). 982). 1023). 124). 48 |
|
Answer» GIVEN expression: 41.25 + 11.085 × 2.75 =? ⇒ ? = 41.25 + 30.48 ⇒ ? = 71.73 ⇒ ? ≈ 72 Hence, the REQUIRED ANSWER in PLACE of question mark is 72. |
|
| 86. |
(181 × 5 + 277) ÷ 6 + 43 = 11 × ? - 461). 382). 183). 194). 22 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (181 × 5 + 277) ÷ 6 + 43 = 11 × ? - 46 ⇒ (905 + 277) ÷ 6 + 43 = 11 × ? - 46 ⇒ 1182 ÷ 6 + 43 = 11 × ? - 46 ⇒ 197 + 43 = 11 × ? - 46 ⇒ 240 = 11 × ? - 46 ⇒ 240 + 46 = 11 × ? ⇒ 286 = 11 × ? ⇒ ? = 286 / 11 ⇒ ? = 26 |
|
| 87. |
√(6 + 4√2) = ?1). -√2 - 22). √2 + 23). √2 - 24). -√2 + 2 |
|
Answer» ⇒ 6 + 4√2 = 2 + 4 + (2 × 2 × √ 2) ⇒ 6 + 4√2 = (2 + √2)2 ∴ √(6 + 4√2) = 2 + √2 |
|
| 88. |
1/17 × ∛4913.28 + 25% of 401% of 300.008 + 1/13.0008 × ∛2197.0008 = ?1). 3022). 4443). 3334). 781 |
|
Answer» 1/17 × ?4913.28 + 25% of 401% of 300.008 + 1/13.0008 × ?2197.0008 = ? It can be APPROXIMATED as 1/17 × ?4913 + 25% of 400% of 300 + 1/13 × ?2197 = ? ⇒ 1/17 × 17 + 1/4 × 4 × 300 + 1/13 × 13 = ? ⇒ 1 + 300 + 1 = ? ⇒ 302 = ? |
|
| 89. |
1). 14682). 15383). 14584). 1358 |
|
Answer» Follow BODMAS rule to solve this QUESTION, as PER the order given below, Step 1: PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step 2: Any mathematical 'Of' or 'Exponent' must be solved next, Step 3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step 4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 11199 – 5666 + 999 = 8000 - ? ⇒ 12198 – 5666 = 8000 - ? ⇒ 6532 = 8000 - ? ⇒ ? = 1468 |
|
| 90. |
268.875 ÷ 8.835 × 24.105 = ?1). 7202). 8003). 7004). 820 |
|
Answer» We are expected to calculate the approximate VALUE and not the EXACT value. ∴ the given numbers can be approximated as follows: 268.875 ≈ 270 8.835 ≈ 9 24.105 ≈ 24 ∴ The given EXPRESSION becomes, 270 ÷ 9 × 24 = 30 × 24 = 720 = ? |
|
| 91. |
65893 + 47630 =? + 746291). 388922). 388903). 388954). 38893 |
|
Answer» ⇒ 65893 + 47630 =? + 74629 ⇒ 65893 + 47630 – 74629 = ? ⇒ ? = 113523 – 74629 = 38894 Hence the ANSWER is 38894 |
|
| 92. |
(9)8.5 × (81)7.5 ÷ (243)-3 = 9?1). 352). 363). 324). 31 |
|
Answer» Given EXPRESSION: (9)8.5 × (81)7.5 ÷ (243)-3 = 9? ⇒ (3)17 × (3)30 ÷ (3)-15 = 9? ⇒ (3)17 + 30 ÷ (3)-15 = 9? ⇒ (3)47 - (-15) = 9? ⇒ (3)62 = 9? ⇒ (9)31 = 9? ⇒ ? = 31 |
|
| 93. |
(51.01 ÷ 16.84) + 20.90 = 35.85 - ?1). 202). 483). 124). 11 |
|
Answer» Follow BODMAS RULE to solve this question, as PER the order given below, Step-1- PARTS of an equation enclosed in ‘Brackets’ must be solved first, and in the bracket, Step-2- Any mathematical ‘Of’ or ‘EXPONENT’ must be solved next, Step-3- Next, the parts of the equation that contain ‘Division’ and ‘MULTIPLICATION’ are calculated, Step-4- Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated. Given expression is, (51.01 ÷ 16.84) + 20.90 = 35.85 - ? We can write the given values as: 51.01 ≈ 51 and 16.84 ≈ 17 20.90 ≈ 21 and 35.85 ≈ 36 Then, ⇒ (51 ÷ 17) + 21 = 36 - ? ⇒ 3 + 21 = 36 - ? ⇒ 24 = 36 - ? ⇒ ? = 36 - 24 ⇒ ? ≈ 12 |
|
| 94. |
45.98 + (4500 ÷ 122) − 8.75 × 12 + 36.101 × 1.499 = ?1). 322). -103). -224). 4 |
|
Answer» 45.98 + (4500 ÷ 122) − 8.75 × 12 + 36.101 × 1.499 Approximating values to the closest integers and solving = 46 + 37 − 105 + 54 = 32 |
|
| 95. |
(28.20 × 7.91) ÷ (8.01% of 700) = 70.02 × 1.89 ÷ ?1). 152). 353). 554). 52 |
|
Answer» Follow BODMAS rule to solve this question, as per the order GIVEN below, Step-1- Parts of an equation ENCLOSED in 'Brackets' MUST be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (28.20 × 7.91) ÷ (8.01% of 700) = 70.02 × 1.89 ÷ ? We can write the given values as: ⇒ 28.20 ≈28 and 7.91 ≈ 8 and 8.01 ≈ 8 ⇒ 70.02 ≈ 70 and 1.89 ≈ 9 Then, ⇒ (28 × 8) ÷ (8% of 700) = 70 × 2 ÷ ? ⇒ (224) ÷ [(8/100) × 700] = 70 × 2 ÷ ? ⇒ (224) ÷ (56) = 70 × 2 ÷ ? ⇒ 4 = 70 × 2 ÷ ? ⇒ 4/70 = 2/? ⇒ ? × 4 = 2 × 70 ⇒ ? = 140/4 ∴ ? ≈ 35 |
|
| 96. |
35% of 250 + ? = 3451). 257.502). 305.503). 235.254). 255.75 |
|
Answer» GIVEN EXPRESSION is, 35% of 250 + ? = 345 $(\FRAC{{35}}{{100}} \times 250 + \;? = 345)$ $(\Rightarrow \frac{{35}}{{100}} \times 250 + \;? = 345)$ ⇒ 87.5 + ? = 345 ⇒ ? = 345 – 87.5 = 257.5 |
|
| 97. |
(91.87 + 118.10) ÷ 14.20 = 90.08 - 14.88% of ?1). 502). 3003). 3904). 450 |
|
Answer» Given expression is, (91.87 + 118.10) ÷ 14.20 = 90.08 - 14.88 % of ? We can write the given values as: 91.87 ≈ 92 and 118.10 ≈ 118 14.20 ≈ 14 and 90.08 ≈ 90 and 14.88 ≈ 15 Then, ⇒ (92 + 118) ÷ 14 = 90 - 15% of ? ⇒ (92 + 118) ÷ 14 = 90 - [(15/100) × ?] ⇒ 210 ÷ 14 = 90 - [15?/100] ⇒ 15 = 90 - (15?/100) ⇒ (15?/100) = 90 - 15 ⇒ (15?/100) = 75 ⇒ 15? = 75 × 100 ⇒ ? = 7500/15 ⇒ ? ≈ 500 |
|
| 98. |
47% of 600 + ?% of 300 = 3991). 452). 413). 424). 39 |
|
Answer» The given expression: $(\Rightarrow \frac{{47}}{{100}} \times 600 + \frac{?}{{100}} \times 300 = 399)$ ⇒ (47 × 6) + (? × 3) = 399 ⇒ 282 + (? × 3) = 399 ⇒ (? × 3) = 399 – 282 ⇒ ? = 117 ÷ 3 = 39 |
|
| 99. |
1). 35.862). 31.863). 33.864). 34.86 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(45{\RM{\% \;of}}\SQRT {\LEFT( {255\; \div \;34\; \times \;146 - 6} \right)}+ \frac{7}{{12}}of\;{\left( {5.4} \right)^2}\; = \;?)$ Applying BODMAS Rule; ⇒ $(45{\rm{\% \;of}}\sqrt {\left( {7.5 \times 146 - 6\;} \right)}+ \frac{7}{{12}}of\;{\left( {5.4} \right)^2} = ?)$ ⇒ $(45{\rm{\% \;of}}\sqrt {\left( {1089} \right)}+ \frac{7}{{12}}of\;29.16 = ?)$ ⇒ 45% of 33 + 17.01 = ? ⇒ 14.85 + 17.01 = ? ∴ ? = 31.86 |
|
| 100. |
1). 102). 163). 84). 5 |
|
Answer» $(294.01 \times \frac{X}{{7.01}} - 9.99\% \;of\;129.99\;x\; = \;231.99\; \div \;0.99)$ ⇒ 294x/7 - 10% of 130x = 232 ÷ 1 ⇒ 42x - 13X = 232 ⇒ 29x = 232 ⇒ x = 8 |
|