InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
1). 6.322). 63). 44). 4.32 |
|
Answer» $(\eqalign{ & 2\sqrt {16 - 6\sqrt {16 - 6\sqrt {16 - \ldots } } } = k \cr & \therefore\ 2\sqrt {16 - 3 \times 2\sqrt {16 - 3 \times 2\sqrt {16 - 3 \times 2} \sqrt {16 - \ldots } } } = k \cr & \therefore \ 2\sqrt {16 - 3K} = k \cr})$ ∴ 4 (16 - 3k) = k2 ∴ k2 + 12k – 64 = 0 ∴ k2 + 16K – 4k – 64 = 0 ∴ (k + 16)(k – 4) = 0 k ≠ -16 ∴ k = 4 |
|
| 2. |
1). 142). 353). 274). 48 |
|
Answer» (√64.09 × 23.95 - 31) ÷ 6.89 = ? APPROXIMATING the values to the nearest INTEGER: ⇒ (8 × 24 - 31) ÷ 7 = ? ⇒ (192 - 31) ÷ 7 = ? ⇒ ? = 161/7 ⇒ ? = 23 |
|
| 3. |
1). 12572). 10323). 11004). 1639 |
|
Answer» ⇒ 623.697 + 721.36 – 61.006 = ? + 27.271 ⇒ 1345.057 – 61.006 = ? + 27.271 ⇒ 1284.051 = ? + 27.271 ⇒ ? = 1284.051 – 27.271 = 1256.78 ∴ ? = 1257 (APPROX.) |
|
| 4. |
Simplify: \({\left( {13} \right)^2} - {\left( {14} \right)^2}{\rm{}} + {\rm{}}{\left( {17} \right)^2} - 250{\rm{}} = {\rm{}}\sqrt ? \)1). 1962). 1693). 1214). 144 |
|
Answer» (13)2 - (14)2 + (17)2 - 250 = √? ⇒ (13 + 14)(13 - 14) + 289 - 250 = √? ⇒ -27 + 289 - 250 = √? ⇒ -27 + 39 = √? ⇒ √? = 12 ∴ ? = 144 |
|
| 5. |
Simplify \(\frac{{0.0347 \times 0.0347 \times 0.0347 + {{\left( {0.9653} \right)}^3}}}{{{{\left( {0.0347} \right)}^2} - \left( {0.0347} \right)\left( {0.9653} \right) + {{\left( {0.9653} \right)}^2}}}\)1). 0.93062). 1.00093). 1.00504). 1 |
|
Answer» ⇒ Let {(0.0347)³ + (0.9653)³}/(0.0347)² - (0.0347)(0.9653) + (0.9653)² = X ⇒ We KNOW that a³ + b³ = (a + b) (a² - AB + b²) ⇒ (0.0347 + 0.9653) {(0.0347)² - (0.0347) (0.9653) + (0.9653)}/(0.0347)² - (0.0347) (0.9653) + (0.9653)² ⇒ x = (0.0347 + 0.9653) ∴ x = 1 |
|
| 6. |
Which is the smallest of the following numbers?1). √252). 5/√253). √25/54). 1/√25 |
|
Answer» The SMALLEST NUMBER is 1/√25 = 1/5 Other NUMBERS are √25 = 5 5/√25 = 5/5 = 1 √25/5 = 5/5 = 1 1/√5 is GREATER than 1/5 |
|
| 7. |
1). 6002). 6303). 6604). 690 |
|
Answer» ⇒ 427.01 - 228.99 + 1672.97 = ? + 1211.95 ⇒ 427 - 229 + 1673 = ? + 1212 ⇒ ? = 427 - 229 + 1673 - 1212 |
|
| 8. |
What is the value of \(\left( {\frac{1}{{2197}}} \right){^{\frac{4}{3}}} \div \left( {\frac{1}{{4913}}} \right){\;^{\frac{2}{3}}}\)1). 289/285612). 289/284613). 289/286614). None of these |
|
Answer» ⇒ $(\left( {\frac{1}{{2197}}} \right){^{\frac{4}{3}}} \DIV \left( {\frac{1}{{4913}}} \right){^{\frac{2}{3}}})$ ⇒ $({2197^{ - \left( {\frac{4}{3}} \right)}} \div {4913^{ - \left( {\frac{2}{3}} \right)\;}})$ ⇒ $({4913^{\left( {\frac{2}{3}} \right)}} \div {2197^{\left( {\frac{4}{3}} \right)\;}})$ ⇒ $(\left( {{{17}^3}} \right){^{\left( {\frac{2}{3}} \right)}} \div ({13^3}){\;^{\left( {\frac{4}{3}} \right)\;}})$ ⇒ $(\frac{{{{17}^2}}}{{{{13}^4}}})$ ∴ 289/28561 |
|
| 9. |
1). 0.22). 0.0023). 24). 0.02 |
|
Answer» [(5.168 × 4453 × 3.194)/(67.999 × 4224.017)] = 73503.85/287228.93 = 0.255 ∴ ANSWER is 0.2 |
|
| 10. |
(6 of 9) + [(3 × 4) - (5 + 1 of 9)] - 25 ÷ 2.5 = ?1). 292). 403). 464). 42 |
|
Answer» FOLLOW BODMAS rule to solve this QUESTION, as per the ORDER given below, Step-1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated (6 of 9) + [(3 × 4) - (5 + 1 of 9)] - 25 ÷ 2.5 = ? ⇒ ? = 54 + [12 - (5 + 9)] - 25 ÷ 2.5 ⇒ ? = 54 + [12 - 14] - 25 ÷ 2.5 ⇒ ? = 54 - 2 - 25 ÷ 2.5 ⇒ ? = 54 - 2 - 10 ∴ ? = 42 |
|
| 11. |
One - fifth of one - sixth of a number is 21, then two - ninth of the number is1). 3202). 1403). 664). 124 |
|
Answer» Let x be the NUMBER then $(\frac{1}{5} \times \frac{1}{6} \times x = 21 \RIGHTARROW x = 21 \times 5 \times 6\therefore \frac{2}{9} \times x = \frac{2}{9} \times 21 \times 5 \times 6 = 140)$ |
|
| 12. |
1). 112). 323). 404). 60 |
|
Answer» In this type of question, we are EXPECTED to calculate APPROXIMATE value (not EXACT value), so we can replace the GIVEN numbers by their nearest perfect places which makes the calculation easy. Now, the given expression: 21 + 3.7 × 2.9 =? ⇒ ? ≈ 21 + 4 × 3 ⇒ ? ≈ 21 +12 ≈ 33 ≈ 32 Hence, the required answer is 32, |
|
| 13. |
1). 92). 273). 814). 90 |
|
Answer» ROUNDING off the VALUES in the GIVEN problem ⇒ (√1600 - √169)2/(√196 - √121)2 ⇒ (40 - 13)2/(14 - 11)2 ⇒ 272/32 ⇒ 729/9 ⇒ 81 ∴ Approximate value is 81 |
|
| 14. |
[(1326 ÷ 26) × 9 – 64] × 3 = [(? + 13) – 3 × 7]1). 12942). 11393). 11904). 1193 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step–1: PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step–2: Any mathematical 'Of' or 'Exponent' must be solved next, Step–3: Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step–4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. [(1326 ÷ 26) × 9 – 64] × 3 = [(? + 13) – 3 × 7] ⇒ [51 × 9 – 64] × 3 = [(? + 13) – 21] ⇒ [459 – 64] × 3 = [(? + 13) – 21] ⇒ 395 × 3 = [(? + 13) – 21] ⇒ 1185 + 21 = (? + 13) ⇒ ? = 1206 – 13 ∴ ? = 1193 |
|
| 15. |
1). 4502). 2003). 40504). 1050 |
|
Answer» 19750.015 ÷ 979.82 × 201.04 = ? APPROXIMATING the VALUES to the NEAREST integer: 19750 ÷ 980 × 201 = ? 19750 × (1/980) × 201 = ? 20.15 × 201 = ? ? = 4050.76 ≈ 4050 |
|
| 16. |
\(\left( {\frac{2}{{\sqrt 5 + \sqrt 3 }} - \frac{3}{{\sqrt 6 - \sqrt 3 }} + \frac{1}{{\sqrt 6 + \sqrt 5 }}} \right)\)is equal to1). \(2\sqrt 6\)2). \(2\sqrt 5\)3). –\(2\sqrt 3\)4).0 |
|
Answer» $(\BEGIN{array}{l} \left( {\frac{2}{{\sqrt 5 + \sqrt 3 }} - \frac{3}{{\sqrt 6 - \sqrt 3 }} + \frac{1}{{\sqrt 6 + \sqrt 5 }}} \right)\\ \RIGHTARROW \left( {\frac{2}{{\sqrt 5 + \sqrt 3 }}} \right) \TIMES \left( {\frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }}} \right) - \left( {\frac{3}{{\sqrt 6 - \sqrt 3 }}} \right) \times \left( {\frac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 + \sqrt 3 }}} \right) + \left( {\frac{1}{{\sqrt 6 + \sqrt 5 }}} \right) \times \left( {\frac{{\sqrt 6 - \sqrt 5 }}{{\sqrt 6 - \sqrt 5 }}} \right)\\ \Rightarrow \left[ {\frac{{\left\{ {2\left( {\sqrt 5 - \sqrt 3 } \right)} \right\}}}{{\left\{ {5 - 3} \right\}}}-\frac{{\left\{ {3\left( {\sqrt 6 + \sqrt 3 } \right)} \right\}}}{{\left\{ {6 - 3} \right\}}} + \frac{{\left\{ {\sqrt 6 - \sqrt 5 } \right\}}}{{\left\{ {6 - 5} \right\}}}} \right] \end{array})$ ⇒ √5 - √3 - √6 - √3 + √6 - √5 ⇒ -2√3 |
|
| 17. |
In an exam, 87% students passed and 2093 failed. What is the total number of students appearing in the exam?1). 161002). 140073). 152004). 18200 |
| Answer» | |
| 18. |
Y - [Y - (X - Y) - {Y - (Y - X - Y)} + 2X] = ?1). 12). X3). 04). Y |
|
Answer» ⇒ Y - [Y - (X - Y) - {Y - (Y - X - Y)} + 2X] ⇒ Y - [Y - (X - Y) - {Y - (-X)} + 2X] ⇒ Y - [Y - (X - Y) - {Y + X} + 2X] ⇒ Y - [Y - X + Y - Y - X + 2X] ⇒ Y - Y ⇒ 0 |
|
| 19. |
1). 14425.252). 14429.253). 14343.654). 14444.65 |
|
Answer» GIVEN expression, 2106.48 + 3296.52 + 8560.73 + 256.4 × 1.8 = 2106.48 + 3296.52 + 8560.73 + 461.52 = 5403 + 9022.25 = 14425.25 |
|
| 20. |
The value of \(\frac{{\sqrt {\sqrt {21 - 9\sqrt 5 } \times \sqrt {21 + 9\sqrt 5 } } }}{{\sqrt {12} \times \sqrt {\left( {18 - 8\sqrt 5 } \right) \times \left( {18 + 8\sqrt 5 } \right)} }}\)1). \(\frac{1}{2}\)2). 23). \(\frac{1}{{2\sqrt 2 }}\)4). \(\frac{1}{{\sqrt 2 }}\) |
|
Answer» Numerator of expression = √ (√ (21 - 9√5) × √ (21 + 9√5)) ⇒ √ (√ (212 – (9√5)2)) = √ (√ (441 – 405)) = √ (√ 36) = √6 Denominator of equation = √ (12 × √ (18 - 8√5) × √ (18 + 8√5)) ⇒ √ 12 × √ (182 - (8√5)2) = √12 × √ (324 - 320) = √12 × √4 = 2√12 So, $(\frac{{\sqrt {\sqrt {21 - 9\sqrt 5 } \times \sqrt {21 + 9\sqrt 5 } } }}{{\sqrt {12} \times \sqrt {\LEFT( {18 - 8\sqrt 5 } \RIGHT) \times \left( {18 + 8\sqrt 5 } \right)} }} = \frac{{\sqrt 6 }}{{2\sqrt {12} }} = \frac{1}{{2\sqrt 2 }})$ |
|
| 21. |
1). 512). 533). 554). 49 |
|
Answer» $( \RIGHTARROW 13\frac{1}{5} + 12\frac{2}{3} + 13\frac{1}{3} + 15\frac{4}{5})$ $( \Rightarrow 13\frac{1}{5} + 15\frac{4}{5} + 12\frac{2}{3} + 13\frac{1}{3})$ ⇒ 29 + 26 ⇒ 55 |
|
| 22. |
How many millimetres make ten kilometres?1). 10102). 1093). 1084). 107 |
|
Answer» We KNOW that one kilometre = 103 metre = 106 millimetre ⇒ 10 kilometre = 107 millimetre |
|
| 23. |
\(9.3\bar 1 + 0.\bar 4 + 0.00\bar 3\) is equal to1). \(9.7\bar 1\)2). \(9.71\bar 3\)3). \(9.75\bar 8\)4). \(9.7\bar 8\) |
|
Answer» $(0.\bar 4 )$ = 0.444444 $(0.00\bar 3)$ = 0.0033333 $(9.3\bar 1 + 0.\bar 4 + 0.00\bar 3)$ = 9.311111 + 0.444444 + 0.003333 = 9.758888 = $(9.75\bar 8)$ |
|
| 24. |
272.80 - 53.051 = 110.64 + ?1). 1272). 1193). 1374). 109 |
|
Answer» Given EXPRESSION is, ⇒ 272.80 - 53.051 = 110.64 + ? We can write the given values as: ⇒ 272.80 ≈ 273 and 53.051 ≈ 53 and 110.64 ≈ 111 Then, the given expression becomes: ⇒ 273 - 53 = 111 + ? ⇒ 220 = 111 + ? ⇒ ? = 109 ∴ ? ≈ 109 |
|
| 25. |
Simplify: 15 - (-5) {4 - (7 - 3)} ÷ [3 {5 + (-3) × (-6)}]1). 102). 123). 154). 20 |
|
Answer» 15 - (-5) {4 - (7 - 3)} ÷ [3 {5 + (-3) × (-6)}] = 15 - (-5) {4 - 4} ÷ [3 {5 + 18}] = 15 - (-5) × 0 ÷ 3 × 23 = 15 - (-5) × 0 ÷ 69 = 15 - (-5) × 0 [PERFORMING division 0 ÷ 69 = 0] = 15 |
|
| 26. |
[(52)x + 2 × (5- x)4 = (5)x – 5]1). 12). 23). 34). 4 |
|
Answer» Given, ⇒ (52)X + 2 × (5- x)4 = (5)x – 5 ⇒ (5)(2x + 4 – 4x) = (5)x – 5 ⇒ (5)(4 – 2x) = (5)x – 5 ⇒ 4 – 2x = x – 5 ∴ x = 3 |
|
| 27. |
(11.25 + 17.25) × 1.5 + (96.5 - 65.25) × 0.5 = ?1). 662). 583). 614). 63 |
|
Answer» Given expression, (11.25 + 17.25) × 1.5 + (96.5 - 65.25) × 0.5 = ? ⇒ 28 × 1.5 + 31 × 0.5 ⇒ 42 + 15.5 ⇒ 57.5 ≈ 58 |
|
| 28. |
If A = 24 × 35 and B = 27 × 35, then what is the value of A × B?1). 210372). 2213103). 24374). 211310 |
|
Answer» A = 24 × 35 B = 27 × 35 ⇒ A X B = 24 × 35 × 27 × 35 ⇒ A × B = 211 × 310 |
|
| 29. |
1). \(\frac{{8\left( {13 - 5\sqrt 2 } \right)}}{{\left( {5 - 2\sqrt 2 } \right)}}\)2). \(\frac{{8\left( {13 - 5\sqrt 6 } \right)}}{{\left( {1 - 2\sqrt 6 } \right)}}\)3). \(\frac{{8\left( {1 - 5\sqrt 6 } \right)}}{{\left( {5 - 2\sqrt 6 } \right)}}\)4). \(\frac{{8\left( {13 - 5\sqrt 6 } \right)}}{{\left( {5 - 2\sqrt 6 } \right)}}\) |
|
Answer» ATQ, x = 2 - √6 $(\frac{1}{x} = \frac{1}{{2 - \sqrt 6 }})$ Now, putting the above values in place of x2, we get, $(\begin{array}{L} \Rightarrow {\LEFT( {2 - \sqrt 6 } \right)^2} + \frac{{12}}{{{{\left( {2 - \sqrt 6 } \right)}^2}}}\\ \Rightarrow 4 + 6 - 2 \TIMES 2 \times \sqrt 6+ \frac{{12}}{{4 + 6 - 2 \times 2 \times \sqrt 6 }}\\ \Rightarrow 10 - 4\sqrt 6+ \frac{{12}}{{10 - 4\sqrt 6 }}\\ \Rightarrow \frac{{{{\left( {10 - 4\sqrt 6 } \right)}^2} + 12}}{{10 - 4\sqrt 6 }}\\ \Rightarrow \frac{{{{\left( {10 - 4\sqrt 6 } \right)}^2} + 12}}{{10 - 4\sqrt 6 }}\\ \Rightarrow \frac{{100 + 16 \times 6 - 2 \times 10 \times 4\sqrt 6+ 12}}{{10 - 4\sqrt 6 }}\\ \Rightarrow \frac{{208 - 80\sqrt 6 }}{{10 - 4\sqrt 6 }}\\\therefore \frac{{8(13 - 5\sqrt {6)} }}{{\left( {5 - 2\sqrt 6 } \right)}}\end{array})$ |
|
| 30. |
If the value of √30 is approximately 5.477, then what is the approximate value of √(5/6)?1). 0.8532). 0.8913). 0.9134). 0.937 |
|
Answer» ⇒ To FIND the VALUE of √(5/6) (Multiply the NUMERATOR and DENOMINATOR with 6 we get √((5 × 6)/(6 × 6)) = (1/√306) ⇒ (1/6) × 5.477 = 0.913 ∴ Required value = 0.913 |
|
| 31. |
1). 1682). 1743). 1784). 182 |
|
Answer» Rounding off the VALUES in the given problem ⇒ (40% of 5500) - (32% of 5600) = ? + 226 ⇒ (40 × 55) - (32 × 56) = ? + 226 ⇒ (2200) - (1792) = ? + 226 ⇒ ? = (2200) - (1792) - 226 ⇒ ? = 2200 - (1792 + 226) ⇒ ? = 2200 - (2018) ⇒ ? = 182 ∴ The approximate VALUE is 182 |
|
| 32. |
1). 1212). 993). 664). 11 |
|
Answer» The given EXPRESSION: [(1.3)2 × (4.2)2] ÷ 2.7 =? ⇒ ? = [1.69 × 17.64] ÷ 2.7 ⇒ ? ≈ 29.81/2.7 ⇒ ? ≈ 11.04 ≈ 11 Hence, the required answer in PLACE of QUESTION MARK is 11. |
|
| 33. |
(180.18 ÷ 3.16) + 44.14 = 15.96 × ? + 7.981). 112). 83). 64). 1 |
|
Answer» Given expression is, (180.18 ÷ 3.16) + 44.14 = 15.96 × ? + 7.98 We can WRITE the given values as: 180.18 ≈ 180 and 3.16 ≈ 3 44.14 ≈ 44 and 15.96 ≈ 16 and 7.98 ≈ 8 Then, ⇒ (180 ÷ 3) + 44 = 16 × ? + 8 ⇒ 60 + 44 = 16 × ? + 8 ⇒ 104 = 16 × ? + 8 ⇒ 104 - 8 = 16 × ? ⇒ 96 = 16 × ? ⇒ ? = 96 /16 ⇒ ? ≈ 6 |
|
| 34. |
1). 202). 173). 104). 23 |
|
Answer» 339.98 ÷ ? = √143.98 + √64.02 By APPROXIMATION; ⇒ 340 ÷ ? = √144 + √64 = 20 ⇒ ? = 340/20 = 17 |
|
| 35. |
Evaluate 7 + 8 + 9 - 1 + 2 - 21 + 531). 452). 233). 574). 75 |
|
Answer» Addition takes priority over subtraction, HENCE: 7 + 8 + 9 - 1 + 2 - 21 + 53 = 15 + 9 - 1 + 2 - 21 + 53 = 24 - 1 + 2 - 21 + 53 = 26 - 1 - 21 + 53 = 79 - 1 - 21 Simple subtraction: 79 - 1 - 21 = 57 |
|
| 36. |
4 – 1 + 5 × 6 ÷ 2 – 1 = ?1). 112). -33). 174). 19 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation ENCLOSED in 'Brackets' must be SOLVED first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. The expression is, ⇒ 4 – 1 + 5 × 6 ÷ 2 – 1 ⇒ 4 – 1 + 5 × 3 – 1 ⇒ 4 – 1 + 15 – 1 ⇒ 17 Hence the answer is 17 |
|
| 37. |
A fraction becomes 6/5 when 5 is added to its numerator and becomes 1/2 when 4 is added to its denominator. What will be the value of the fraction?1). 8/92). 7/103). 7/84). 6/11 |
|
Answer» LET the fraction be a/b, From the questions statement ⇒ (a + 5)/b = 6/5 ⇒ (5a + 25)/6 = b… (i) When 4 is added to its denominator ⇒ a/(b + 4) = 1/2 ⇒ 2A = b + 4 Using (i) ⇒ 2a = (5a + 25)/6 + 4 ⇒ 7a = 49 ⇒ a = 7 Put this in (i) ⇒ b = (5 × 7 + 25)/6 ⇒ b = 10 ∴ the fraction is 7/10 |
|
| 38. |
Simplify \(\left( {3\frac{1}{5}of\left( {2\frac{2}{3}of\;3\frac{1}{2}} \right)} \right) \div 1\frac{1}{3} \sim \left( {2\frac{1}{3}of\left( {4\frac{1}{5}of1\frac{1}{3}} \right)} \right)of\;2\frac{2}{3}\)1). 3 ∶ 72). 11 ∶ 133). 9 ∶ 144). 3 ∶ 13 |
|
Answer» Follow BODMAS RULE to SOLVE this question, as per the ORDER given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. $(\begin{array}{l} \left( {3\frac{1}{5}of\;\left( {2\frac{2}{3}of3\frac{1}{2}} \right)} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\left( {4\frac{1}{5}of1\frac{1}{3}} \right)} \right)of\;2\frac{2}{3}\\ = \left( {3\frac{1}{5}of\;\left( {\frac{8}{3}\; \times \;\frac{7}{2}} \right)} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\left( {\frac{{21}}{5}\; \times \;\frac{4}{3}} \right)} \right)of\;2\frac{2}{3}\\ = \left( {3\frac{1}{5}\;of\;\frac{{28}}{3}} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\frac{{28}}{5}} \right)of\;2\frac{2}{3}\\ = \left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right) \div \frac{4}{3}:\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)of\;\frac{8}{3}\; = \;\left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right)\; \times \;\frac{3}{4}:\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)\; \times \;\frac{8}{3}\\ = \frac{{\left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right)\; \times \;\frac{3}{4}}}{{\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)\; \times \;\frac{8}{3}}}\; = \;\frac{9}{{14}} \end{array})$ |
|
| 39. |
(69.987 × 2 - 27.872 × ? = 0)1). 32). 53). 74). 8 |
|
Answer» Approximating the TERMS as, ⇒ 69.987 ≅ 70 ⇒ 27.872 ≅ 28 Hence, the expression approximately becomes, ⇒ 70 × 2 – 28 × ? = 0 ⇒ 140 = 28 × ? ∴ ? = 5 |
|
| 40. |
1). 642). 723). 804). 81 |
|
Answer» $(\begin{array}{L}\SQRT {1 + \;\frac{X}{{361}}}= \frac{{21}}{{19}}\\ \Rightarrow 1 + \frac{x}{{361}}\; = \frac{{{{21}^2}}}{{{{19}^2}}}\\ \Rightarrow \frac{{361 + x}}{{361}} = \frac{{441}}{{361}}\END{array})$ ⇒ 361 + x = 441 ⇒ x = 441 – 361 = 80 ∴ x = 80 |
|
| 41. |
1). 122.0562). 0.122563). 122.00564). 122.00056 |
|
Answer» For CONVERTING it into decimal ⇒ {(122 × 10000) + 56} ÷ 10000 ⇒ (1220000 + 56) ÷ 10000 ⇒ 122.0056 |
|
| 42. |
1). 17/132). 13/173). 13/74). 17/7 |
|
Answer» $(\sqrt[3]{{\frac{{4913}}{{2197}}}} = \sqrt[3]{{\frac{{17 \TIMES 17 \times 17}}{{13 \times 13 \times 13}}}} = \frac{{17}}{{13}})$ |
|
| 43. |
1). 782). 793). 814). 89 |
|
Answer» $(\Rightarrow 9{8\ \over 9} \TIMES 9 = 9 \times 9 + \frac{8}{9} \times9 = 89)$ |
|
| 44. |
1). 1352). 1323). 184). 131 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an EQUATION enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(17\frac{1}{5} + 21\frac{1}{2} + 4\frac{4}{5} + 2\frac{1}{2} = 177\frac{3}{3} - ?)$ ⇒ 86/5 + 43/2 + 24/5 + 5/2 = 534/3 - ? ⇒ 86/5 + 43/2 + 24/5 + 5/2 = 178 - ? ⇒ 110/5 + 48/2 = 178 - ? ⇒ 22 + 24 = 178 - ? ⇒ 46 = 178 - ? ⇒ ? = 178 – 46 ⇒ ? = 132 |
|
| 45. |
5.36 × 3.6 =1). 19.2962). 18.9463). 21.9964). 20.26 |
|
Answer» 5.36 × 3.6 = 536/100 × 36/10 = 536 × 36/1000 = 19296/1000 = 19.296 (shift 3 PLACES from the RIGHT end to the LEFT) |
|
| 46. |
What is the simplified value of \(\sqrt {\frac{{{{\left( {0.04} \right)}^2} + {{\left( {0.21} \right)}^2} - 0.0084}}{{{{\left( {0.04} \right)}^3} + {{\left( {0.21} \right)}^3}}}}\)1). 0.52). 23). (1/0.25)4). (1/0.3) |
|
Answer» $(\therefore \sqrt {\FRAC{{{{\LEFT( {0.04} \RIGHT)}^2} + {{\left( {0.21} \right)}^2} - 0.0084}}{{{{\left( {0.04} \right)}^3} + {{\left( {0.21} \right)}^3}}}} = \sqrt {\frac{{{{\left( {0.04} \right)}^2} + {{\left( {0.21} \right)}^2} - \left( {0.04 \times 0.21} \right)}}{{\left( {0.04 + 0.21} \right)({{0.04}^2} + {{0.21}^2} - \left( {0.04 \times 0.21} \right)}}} = \sqrt {\frac{1}{{0.25}}} = \frac{1}{{0.5}} = 2)$ |
|
| 47. |
Simplify: \(\left[ {2\frac{1}{3} - 1\frac{1}{2}} \right]of\frac{3}{5}\; + \;1\frac{2}{5} \div 2\frac{1}{3}\)1). 1/102). 3/103). 11/104). 1 |
|
Answer» $(\begin{ARRAY}{L} \left[ {2\frac{1}{3} - 1\frac{1}{2}} \RIGHT]of\frac{3}{5}\; + \;1\frac{2}{5} \div 2\frac{1}{3}\; = \;\left[ {\frac{7}{3} - \frac{3}{2}} \right]of\frac{3}{5}\; + \;\frac{7}{5} \div \frac{7}{3}\\ = \;\frac{5}{6}of\frac{3}{5}\; + \;\frac{{\frac{7}{5}}}{{\frac{7}{3}}}\\ = \;\frac{5}{6}\; \times \;\frac{3}{5}\; + \;\frac{3}{5}\\ = \;\frac{1}{2}\; + \;\frac{3}{5}\\ = \;\frac{{11}}{{10}}\; = \;1\frac{1}{{10}}\\ \therefore \left[ {2\frac{1}{3} - 1\frac{1}{2}} \right]of\frac{3}{5}\; + \;1\frac{2}{5} \div 2\frac{1}{3}\; = \;1\frac{1}{{10}} \end{array})$ |
|
| 48. |
II. √(0.010201) + √(98.01) + √(0.25) = 11.511). Only I2). Only II3). Both I and II4). Neither I nor II |
|
Answer» Solving for STATEMENT I, √64 + √(0.0064) + √(0.81) + √(0.0081) = 9.07 ⇒ 8 + 0.08 + 0.9 + 0.09 = 9.07 ⇒ 9.07 = 9.07 ⇒ L.H.S. = R.H.S. Solving for statement II, √(0.010201) + √(98.01) + √(0.25) = 11.51 ⇒ 0.101 + 10(APPROX.) + 0.5 = 11.51 ⇒ 10.601(approx.) ≠ 11.51 ⇒ L.H.S. ≠ R.H.S. ∴ Only Statement I is TRUE. |
|
| 49. |
Which fraction among 3/7, 4/11 and 5/8 is the smallest?1). 3/72). 4/113). 5/84). All are equal |
|
Answer» $(\frac{3}{7} = 0.4284,\frac{4}{{11}} = 0.3636,\frac{5}{8} = 0.625)$ So smallest is $(\frac{4}{{11}})$ It can also be solved by making the denominators equal LCM of 7, 11 & 8 = 616 $(\frac{{264}}{{616}} = \frac{3}{7},\frac{{224}}{{616}} = \frac{4}{{11}},\frac{{385}}{{616}} = \frac{5}{8})$ When, based are equal, we can CLEARLY see. $(\frac{{224}}{{616}})$ is the smallest i.e. $(\frac{4}{{11}})$ |
|
| 50. |
Arrange them in ascending order \(\sqrt[4]{6},\sqrt[3]{3}\) and \(\sqrt[3]{4}\)1). \(\sqrt[3]{3} < \sqrt[4]{6} > \sqrt[3]{4}\)2). \(\sqrt[3]{3} > \sqrt[4]{6} > \sqrt[3]{4}\)3).4). \(\sqrt[3]{3} < \sqrt[4]{6} < \sqrt[3]{4}\) |
|
Answer» $(\Rightarrow \sqrt[4]{6} = {6^{\frac{1}{{4}}}} = {6^{\frac{3}{{12}}}} = \left( {216} \right){^{\frac{1}{{12}}}})$ $(\Rightarrow \sqrt[3]{3} = {3^{\frac{1}{3}}} = {3^{\frac{4}{{12}}}} = {\left( {81} \right)^{\frac{1}{{12}}}})$ $(\begin{array}{l} \Rightarrow \sqrt[3]{4} = {4^{\frac{1}{3}}} = {4^{\frac{4}{{12}}}} = {\left( {256} \right)^{\frac{1}{{12}}}}\\ \therefore \sqrt[3]{3} < \sqrt[4]{6} < \sqrt[3]{4} \end{array})$ |
|