Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

(77.80 ÷ 2.10) + 60.94 = 22.11 × 3.95 + ?1). 162). 123). 344). 32

Answer»

Given expression is,

(77.80 ÷ 2.10) + 60.94 = 22.11 × 3.95 + ?

We can write the given VALUES as:

77.80 ≈ 78 and 2.10 ≈ 2

60.94 ≈ 61 and 22.11 ≈ 22 and 3.95 ≈ 4

Then,

⇒ (78 ÷ 2) + 61 = 22 × 4 + ?

⇒ 39 + 61 = 22 × 4 + ?

⇒ 39 + 61 = 88 + ?

100 = 88 + ?

⇒ ? = 100 - 88

⇒ ? ≈ 12
102.

1). \(13\frac{1}{3}\)2). \(15\frac{1}{2}\)3). \(19\frac{1}{8}\)4). \(15\frac{3}{4}\)

Answer»

GIVEN expression

$(\Rightarrow \;? = 12\frac{1}{3} + 10\frac{5}{6} - 7\frac{2}{3})$

$(\Rightarrow \;? = \frac{{37}}{3} + \frac{{65}}{6} - \frac{{23}}{3} )$

$(\Rightarrow \;? = \frac{{74 + 65 - 46}}{6}\;)$

$(\Rightarrow \;? = \frac{{93}}{6})$

$(\Rightarrow \;? = 15\frac{1}{2})$

103.

1). 482). 233). 74). 41

Answer»

$(\SQRT[3]{{729}}{\rm{}} + {\rm{}}\sqrt {441}- \sqrt[3]{{343}}{\rm{}} = {\rm{}}\sqrt[3]{{{9^3}}}{\rm{}} + {\rm{}}\sqrt {{{21}^2}}- \sqrt[3]{{{7^3}}}{\rm{}} = {\rm{}}9 + 21 - 7 = 23)$

104.

The simplified form of ((√3)3/2)4 + ((√3)-3/2)4 is:1). 729/272). 244/273). 730/274). 82/27

Answer»

((√3)3/2)4 + ((√3)-3/2)4 = 33 + 3-3 = 33 + 1/33 = (36 + 1)/33 = (729 + 1)/27 = 730/27

105.

1). 2572). 25.73). 2.574). 0.0257

Answer»

$(\BEGIN{array}{l}\frac{{\LEFT( {0.0112 - 0.0012} \RIGHT)\;of\;0.14\; + \;0.25\; \TIMES \;0.2}}{{0.02\; \times \;0.01}}\\ = \;\frac{{\left( {0.01} \right)of\;0.14\; + \;0.05}}{{0.0002}}\\ = \;\frac{{0.01\; \times \;0.14\; + \;0.05}}{{0.0002}}\\\; = \;\frac{{0.0014\; + \;0.05}}{{0.0002}}\\ = \;\frac{{0.0514}}{{0.0002}}\\ = \;257\end{array})$

106.

(60% of 150)% of (80% of 600) = ?1). 2882). 3363). 3844). 432

Answer»

FOLLOW BODMAS rule to solve this question, as PER the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed,

(60% of 150)% of (80% of 600) = ?

⇒ (60/100 × 150)% of (80/100 × 600) = ?

⇒ 90% of 480 = ?

Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next,

⇒ 90/100 × 480 = ?

∴ ? = 432
107.

The value of \(\sqrt {50 - 7 \times \frac{{1\frac{2}{7} - 2\frac{3}{7}}}{{\frac{1}{{1 + \frac{3}{7}}} - \frac{9}{{70}}}}} \) is –1). 02). 43). 34). 8

Answer»

 

$(\sqrt {50 - 7 \times \frac{{1\frac{2}{7} - 2\frac{3}{7}}}{{\frac{1}{{1 + \frac{3}{7}}} - \frac{9}{{70}}}}} )$

 

= $(\sqrt {50 - 7 \times \frac{{\frac{9}{7} - \frac{{17}}{7}}}{{\frac{1}{{\frac{{10}}{7}}} - \frac{9}{{70}}}}} )$

= $(\sqrt {50 - 7 \times \frac{{ - \frac{8}{7}}}{{\frac{7}{{10}} - \frac{9}{{70}}}}} )$

= $(\sqrt {50 - 7 \times \frac{{ - \frac{8}{7}}}{{\frac{4}{7}}}} )$

= $(\sqrt {50 - 7 \times - 2} )$

= √64

= 8

108.

8500 + (2350 ÷ 50) = ?1). 8752). 87003). 85754). 8547

Answer»

FOLLOW BODMAS rule to solve this question, as PER the order given below,

Step-1-Parts of an EQUATION enclosed in 'Brackets' MUST be solved first,

Step-2-Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

The given expression:

8500 + (2350 ÷ 50)

= 8500 + 47

= 8547
109.

1). 562). 423). 464). 26

Answer»

Follow BODMAS rule to solve this QUESTION, as per the order given below,

STEP - 1 - Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

(167 × 3 + 7) ÷ 4 = 85 + ?

⇒ ? + 85 = (501 + 7) ÷ 4

⇒ ? + 85 = 508 ÷ 4 = 127

⇒ ? = 127 - 85

∴ ? = 42

110.

1). \(\sqrt {6\;}+ \sqrt {12} \)2). \(\sqrt 3+ \sqrt {12} \)3). \(\sqrt 2+ \sqrt {12} \)4). 0

Answer»

CONJUGATE of (√a + √b) is (√a - √b) and vice versa.

$(\begin{array}{l}\left[ {\frac{{3\sqrt 2 }}{{\sqrt 5+ \sqrt 8 }} - \frac{{4\sqrt 3 }}{{2 + \sqrt 8 }} + \frac{{\sqrt 8 }}{{\sqrt 2+ \sqrt 3 }} + \frac{4}{{\sqrt {10}- \sqrt 6 }}} \right] = \left[ {\frac{{3\sqrt 2 \left( {\sqrt 8- \sqrt 5 } \right)}}{{8 - 5}} - \frac{{4\sqrt 3 \left( {\sqrt 8- 2} \right)}}{{8 - 4}} + \frac{{\sqrt 8 \left( {\sqrt 3- \sqrt 2 } \right)}}{{3 - 2}} + \frac{{4\left( {\sqrt {10}+ \sqrt 6 } \right)}}{{10 - 6}}} \right]\\ = \sqrt {16}- \sqrt {10}- \sqrt {24}+ \sqrt {12}+ \sqrt {24}- \sqrt {16}+ \sqrt {10}+ \sqrt 6= \sqrt {6\;}+ \sqrt {12}\END{array})$

111.

1). 32). 2.13). 14). 0.1

Answer»

$(\begin{array}{l}\FRAC{{0.7\; \TIMES 0.7 \times 0.7\; + \;0.3 \times 0.3 \times 7.3}}{{0.7 \times 0.7\; + \;0.3 \times 0.3\; + \;0.42}}\\= \;\frac{{0.343\; + \;0.09 \times 7.3}}{{{{0.7}^2}\; + \;{{0.3}^2}\; + \;2 \times 0.3 \times 0.7}}\;\\= \;\frac{{0.343\; + \;0.657}}{{{{\left( {0.7\; + \;0.3} \RIGHT)}^2}}}\end{array})$

= 1/1 = 1

112.

(4.42 ÷ 1.7) + (3.36 ÷ 1.4) – (4.32 ÷ 1.2) = ?1). 0.22). 1.43). 14). 2.2

Answer»

The expression can be solved as following:

$(\begin{array}{L} \RIGHTARROW \left( {4.42{\RM{}} \div {\rm{}}1.7} \right) + {\rm{}}\left( {3.36{\rm{}} \div {\rm{}}1.4} \right)-{\rm{}}\left( {4.32{\rm{}} \div {\rm{}}1.2} \right)\\ = \frac{{44.2}}{{17}} + \frac{{33.6}}{{14}} - \frac{{43.2}}{{12}} \end{array})$

= 2.6 + 2.4 – 3.6

= 1.4
113.

14% of 250 + ? % of 300 = 1251). 222). 243). 364). 30

Answer»

Follow BODMAS RULE to solve this QUESTION, as per the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' must be SOLVED first,

Step-2-Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED,

Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Now, the given expression,

14% of 250+ ?% of 300 = 125

⇒35 + ?% of 300 = 125

⇒ 3× ? = 90

⇒ ? = 30
114.

Find the approximate value of: (90.195 ÷ 2.942 × 121.012 ÷ 3.963)1). 1002). 4003). 9004). 1600

Answer»

Approximating the TERMS as,

90.195 ≈ 90

⇒ 2.942 ≈ 3

⇒ 121.012 ≈ 120

⇒ 3.963 ≈ 4

Hence, the EQUATION is approximated to,

⇒ 90 ÷ 3 × 120 ÷ 4

⇒ 30 × 30

900

115.

Find x, given \(5{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}:\)1). x = 12). x = -13). x = -24). x = 0

Answer»

$(\begin{array}{l}5{\left( {\sqrt 5 } \right)^{X + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^2}{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^{x + 6 + 2}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\end{array})$

From laws of INDICES: x + 8 = 2x + 7

⇒ x = 1
116.

What is the simplified value of \(2\sqrt[3]{{243}}\; + \;3\sqrt[3]{9}\; + \;\sqrt[3]{{1125}}\)?1). \(5\sqrt[3]{9}\)2). \(14\sqrt[3]{9}\)3). \(7\sqrt[3]{9}\)4). \(11\sqrt[3]{9}\)

Answer»

GIVEN that,

$(2\SQRT[3]{{243}}\; + \;3\sqrt[3]{9}\; + \;\sqrt[3]{{1125}})$ 

$(\RIGHTARROW \;2\sqrt[3]{{27\; \times 9\;}}\; + \;3\sqrt[3]{9}\; + \;\sqrt[3]{{125\; \times 9}})$

$(\Rightarrow \;6\sqrt[3]{{9\;}}\; + \;3\sqrt[3]{9}\; + \;5\sqrt[3]{9}\; = \;14\sqrt[3]{{9\;}})$
117.

If (1/3.197) = 0.3127, find the value of (1/0.0003197).1). 31272). 31973). 312.74). 0.3127

Answer»

GIVEN, (1/3.197) = 0.3127

∴ (1/0.0003197) = (1/3.197) × 10000 = 0.3127 × 10000 = 3127
118.

90 × 9 – 90 + 9000 ÷ 900 = ?1). 10.82). 7303). 1084). 100

Answer»

ACCORDING to BODMAS

We will RESOLVE DIVISION and multiplication first

90 × 9 = 810

9000 ÷ 900 = 10

Now the EXPRESSION becomes

810 – 90 + 10

= 730
119.

1). \(\frac{{3}}{4}\)2). \(\frac{5}{8}\)3). \(\frac{3}{16}\)4). \(\frac{3}{8}\)

Answer»

$(\begin{array}{l} \Rightarrow \FRAC{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}}\\ \Rightarrow \frac{1}{{2 \times 3}} + \frac{1}{{3 \times 4}} + \frac{1}{{4 \times 5}} + \frac{1}{{5 \times 6}} + \frac{1}{{6 \times 7}} + \frac{1}{{7 \times 8}}\\ \Rightarrow \LEFT( {\frac{1}{2}-\frac{1}{3}} \RIGHT) + \left( {\frac{1}{3}-\frac{1}{4}} \right) + \left( {\frac{1}{4}-\frac{1}{5}} \right) + \left( {\frac{1}{5}-\frac{1}{6}} \right) + \left( {\frac{1}{6}-\frac{1}{7}} \right) + \left( {\frac{1}{7}-\frac{1}{8}} \right)\\ \Rightarrow \frac{1}{2}-\frac{1}{3} + \frac{1}{3}-\frac{1}{4} + \frac{1}{4}-\frac{1}{5} + \frac{1}{5}-\frac{1}{6} + \frac{1}{6}-\frac{1}{7} + \frac{1}{7}-\frac{1}{8}\\ \Rightarrow \frac{1}{2}-\frac{1}{8}\\ \Rightarrow \frac{{4-1}}{8}\\\therefore \frac{3}{8}\end{array})$

120.

1). 2/52). 4/53). 9/104). 1/5

Answer»

$( \Rightarrow \frac{1}{2} + \frac{1}{4} + \frac{1}{{10}} + \frac{1}{{20}})$

$( \Rightarrow \frac{{10 + 5 + 2 + 1}}{{20}})$

⇒ 9/10

121.

Arrange the functions \(\frac{3}{4},\frac{5}{{12}},\frac{{13}}{{16}},\frac{{16}}{{29}},\frac{3}{8}\) In their ascending order of magnitude.1). \(\frac{3}{4} < \frac{3}{8} < \frac{{13}}{{16}} < \frac{{16}}{{29}} < \frac{5}{{12}}\)2). \(\frac{3}{8} < \frac{5}{{12}} < \frac{{16}}{{29}} < \frac{3}{4} < \frac{{13}}{{16}}\)3). \(\frac{3}{8} < \frac{5}{{12}} < \frac{{16}}{{29}} < \frac{{13}}{{16}} < \frac{3}{4}\)4). \(\frac{3}{8} < \frac{5}{{12}} < \frac{{13}}{{16}} < \frac{{16}}{{29}} < \frac{3}{4}\)

Answer»

CONVERTING FRACTIONS to DECIMALS,

⇒ 3/4 = 0.75

⇒ 5/12 = 0.4167

⇒ 13/16 = 0.8125

⇒ 16/29 = 0.5517

⇒ 3/8 = 0.375

? 0.375 < 0.4167 < 0.5517 < 0.75 < 0.8125

∴ 3/8 < 5/12 < 16/29 < 3/4 < 13/16
122.

\(\frac{1}{{\sqrt 9- \sqrt 8 }} - \frac{1}{{\sqrt 8- \sqrt 7 }} + \frac{1}{{\sqrt 7- \sqrt 6 }} - \frac{1}{{\sqrt 6- \sqrt 5 }} + \frac{1}{{\sqrt 5- \sqrt 4 }}\) is equal to1). 52). 13). 34). 0

Answer»

$(\frac{1}{{\sqrt 9- \sqrt 8 }} - \frac{1}{{\sqrt 8- \sqrt 7 }} + \frac{1}{{\sqrt 7- \sqrt 6 }} - \frac{1}{{\sqrt 6- \sqrt 5 }} + \frac{1}{{\sqrt 5- \sqrt 4 }})$ ----(1)

In equation 1, we will rationalize the DENOMINATOR of each of the TERMS to remove root from the denominator and MAKE the calculations easier.

$(\frac{1}{{\sqrt 9- \sqrt 8 }} = \frac{1}{{\sqrt 9- \sqrt 8 }} \times \frac{{\sqrt 9+ \sqrt 8 }}{{\sqrt 9+ \sqrt 8 }} = \frac{{\sqrt 9+ \sqrt 8 }}{{{{\left( {\sqrt 9 } \right)}^2} - {{\left( {\sqrt 8 } \right)}^2}}} = \frac{{\sqrt 9+ \sqrt 8 }}{{9 - 8}} = \sqrt 9+ \sqrt 8 )$

Similarly, $(\frac{1}{{\sqrt 8- \sqrt 7 }} = \sqrt 8+ \sqrt 7)$

$(\BEGIN{array}{l}\frac{1}{{\sqrt 7- \sqrt 6 }} = \sqrt 7+ \sqrt 6 \\\frac{1}{{\sqrt 6- \sqrt 5 }} = \sqrt 6+ \sqrt 5 \\\frac{1}{{\sqrt 5- \sqrt 4 }} = \sqrt 5+ \sqrt 4\end{array})$

Equation 1 will reduce to

$(\begin{array}{l}\left( {\sqrt 9+ \sqrt 8 } \right) - \left( {\sqrt 8+ \sqrt 7 } \right) + \left( {\sqrt 7+ \sqrt 6 } \right) - \left( {\sqrt 6+ \sqrt 5 } \right) + \left( {\sqrt 5+ \sqrt 4 } \right)\\ = \sqrt 9+ \sqrt 4\end{array})$ 

= 3 + 2 = 5

123.

Find the value of \(\frac{{\sqrt {0.441} }}{{\sqrt {0.625} }}\)1). 0.0482). 0.0843). 0.484). 0.84

Answer»

Given Equation is,

$(\begin{ARRAY}{L}\frac{{\sqrt {0.441} }}{{\sqrt {0.625} }}\\ = \sqrt {\frac{{441}}{{625}}} \\ = \sqrt {\frac{{{{21}^2}}}{{{{25}^2}}}} \\ = \frac{{21}}{{25}}\END{array})$ 

= 0.84
124.

1). 0.352). 0.463). 0.924). 0.28

Answer»

FOLLOW BODMAS rule to solve this question, as per the ORDER given below,

Step-1: Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated

⇒ (10 × 6 ÷ 6 ÷ 6 ÷ 6 ÷ 6 × 10)

= (10 × 1 ÷ 6 ÷ 6 ÷ 6 × 10)

= (10 × 1/6 ÷ 6 ÷ 6 × 10)

= (10 × 1/36 ÷ 6 × 10)

= (10 × 1/216 × 10)

= 100/216

∴ (10 × 6 ÷ 6 ÷ 6 ÷ 6 ÷ 6 × 10) + (10 × 6 ÷ 6 ÷ 6 ÷ 6 ÷ 6 × 10) = 100/216 + 100/216

= 200/216 = 25/27 = 0.92
125.

If the fraction 7/13, 2/3, 4/11, 5/9 are arranged in ascending order, then the correct sequence is ?1). 2/3, 7/13, 4/11, 5/92).7/13, 4/11, 5/9, 2/33). 4/11, 7/13, 5/9, 2/34). 5/9, 4/11, 7/13, 2/3

Answer»

Out of 2/3, 7/13, 4/11, 5/9

2/3 is the LARGEST NUMBER followed by 5/9 then 7/13 and the SMALLEST is 4/11.

∴ The ASCENDING ORDER will be 4/11, 7/13, 5/9, 2/3.
126.

Least number that must be added to 64500 to make the result a perfect square,is1). 162). 243). 124). 27

Answer»

The option c and d are eliminated SINCE if 12 and 27 are ADDED to 64500, the last digit becomes 2 and 7 respectively. And a perfect never ends in 2, 3, 7, 8.

64500 + 16 = 64516 = (254)2
127.

1). 0.042). 1.493). 2.54). 1.77

Answer»

$(\begin{ARRAY}{l} \FRAC{1}{{\sqrt {729.23} - \sqrt {624.89} }} + \sqrt {729.23} - \sqrt {624.89} \approx \frac{1}{{\sqrt {729} - \sqrt {625} }} + \sqrt {729} - \sqrt {625} \\ \approx \frac{1}{{27 - 25}} + 27 - 25 \approx \frac{1}{2} + 2 \approx \frac{5}{2} \approx 2.5 \end{array})$

128.

1). 22). 33). 44). 5

Answer»

858.231 ÷ 39.345 × 74.154 – 1499.98 + 31.798 = (2)? × 9.879

Taking their APPROX. values

⇒ 858/39 × 74 – 1500 + 32 = (2)? × 10

⇒ 1628 – 1500 + 32 = (2)? × 10

128 + 32 = (2)? × 10

⇒ 160/10 = (2)?

⇒ 2? = 16

⇒ 2? = 24

⇒ ? = 4

129.

14% of 857 - 5.6 × 12.128 = ?1). 452). 523). 554). 56

Answer»

By APPLYING BODMAS

⇒ (857 × 0.14) – 5.6 × 12.128 = ?

By TAKING APPROXIMATE value

⇒ (857 × 0.14) – (5.6 × 12) = ?

⇒ 119.98 – 67.2 = ?

Taking approximate value

⇒ ? = 120 – 67.2 = 52.8
130.

1). 0.02252). 0.002253). 0.2254). 2.25

Answer»

On MULTIPLYING 0.15 and 0.15 , we get

⇒ 0.15 × 0.15 = (15 × 15)/10000 = 225/10000 = 0.0225
131.

1). 72). 103). 124). 6

Answer»

Follow the BODMAS rule to SOLVE the question,

435 ÷ 7.5 – 40% of 130 = ?

Any mathematical 'Of' or 'Exponent' MUST be solved first,

⇒ 435 ÷7.5 – [(40/100) × 130] = ?

The parts of the equation that contain 'Division' and 'Multiplication' are calculated,

⇒ (435 ÷ 7.5) – 52 = ?

The parts of the equation that contain 'Addition' and 'Subtraction' should be calculated,

58 – 52 = ?

∴ ? = 6

132.

1). 5/92). (0.7)23). \(\sqrt {\frac{9}{{49}}} \)4). 0.43

Answer»

5/9 = 0.555

√(9/49) = 3/7 = 0.428

0.43 = 0.43

(0.7)2 = 0.49

So the LEAST no. is √(9/49)

133.

1). 2142). 723). 1684). 216

Answer»

Let the no. be X. then,CORRECT ANSWER = 8x/7 and wrong answer = 7x/8. Then

8x/7 - 7x/8 = 45 

⇒ (64x - 49x)/56 = 45

⇒ 15x/56 = 45

x = 168

134.

1). 1202). 1403). 1904). 210

Answer»

(1501.01 ÷ 98.89)(6.979 × 1.984)

⇒ (1500 ÷ 100)(7 × 2)

15 × 14

⇒ 210

135.

75% is equal to1). 6/92). 3/83). 6/84). 15/25

Answer»

The percentage is 75%

= 75/100

= 15/20[when DIVIDED by 5 both]

= 3/4 [when divided by 5 in both]

= 6/8 [MULTIPLYING 2 in both]

Hence the ANSWER is 6/8
136.

What is the difference between the values of the expressions [5 + 32 × 1 ÷ 2 + 42 - 7 ÷ (6 + 41.5)] ÷ 5 × 2 and [5 + 32 × 1 ÷ 2 + 42 - 7 ÷ (6 + 41.5)] ÷ (5 × 2)?1). 102). 2.53). 7.54). 5

Answer»

Both the expressions are same except for the last part 5 × 2 in first ONE and (5 × 2) in the second one

Finding out the value of the expression except that part:

⇒ [5 + 32 × 1 ÷ 2 + 42 - 7 ÷ (6 + 41.5)]

⇒ [5 + 32 × 1 ÷ 2 + 42 - 7 ÷ (6 + 8)] [? BRACKET is operated first, ORDER is next]

⇒ [5 + 32 × 1 ÷ 2 + 42 - 7 ÷ 14]

⇒ [5 + 9 × 1 ÷ 2 + 16 - 7 ÷ 14] [? Order is operated next]

⇒ [5 + 9 × 0.5 + 16 - 0.5] [? Division is operated next]

⇒ [5 + 4.5 + 16 - 0.5] [? Multiplication is operated next]

⇒ [25.5 - 0.5] [? addition is operated next]

⇒ 25 [? subtraction is operated next]

⇒ First expression is (25 ÷ 5) × 2 = 5 × 2 = 10

⇒ Second expression is 25 ÷ (5 × 2) = 25 ÷ 10 = 2.5

∴ Difference of the values = 10 - 2.5 = 7.5
137.

What is the value of \(\frac{{5.6 \times 0.36 + 0.42 \times 3.2}}{{0.8 \times 2.1}}?\)1). 22). 13). 34). 3/2

Answer»

$(\frac{{5.6 \TIMES 0.36 + 0.42 \times 3.2}}{{0.8 \times 2.1}})$

$( \Rightarrow \frac{{2 \times 7\left( {8 \times 18 + 6 \times 16} \right)}}{{8 \times 210}})$

$(\Rightarrow \frac{{2\left( {144 + 96} \right)}}{{8 \times 30}})$

$(\Rightarrow \frac{{240}}{{4 \times 30}})$

⇒ 2
138.

Find the value of (x – y), if (35)x ÷ (9)2x – 1 = 243 and (5)x – 2y × (5)x + y = 625.1). 02). 13). 24). 3

Answer»

LAWS of Indices:

1. am × aN = a{m + n}

2. a÷ an = a{m – n}

3. (am)n = amn

4. (a)-m = 1/am

5. (a)m/n = n√am

6. (a)0 = 1

Given, (35)x ÷ (9)2x – 1 = 243

⇒ (3)5X ÷ (32)2x – 1 = (3)5

⇒ (3)5x ÷ (3)4x – 2 = (3)5

⇒ (3){5x – 4x + 2} = (3)5

⇒ (3)x + 2 = (3)5

Equating POWERS,

⇒ x + 2 = 5

⇒ x = 5 – 2 = 3

Also, (5)x – 2y × (5)x + y = 625

⇒ (5)(x – 2y + x + y) = (5)4

⇒ (5)2x – y = (5)4

Equating powers,

⇒ 2x – y = 4

Substituting for ‘x’,

⇒ 2(3) – y = 4

⇒ y = 6 – 4 = 2

∴ (x – y) = 3 – 2 = 1
139.

Find the power of 3 in the expression: \(\sqrt {2\sqrt {3\sqrt {3\sqrt {3\sqrt 3 } } \;} } \)1). 15/322). 1/23). 15/164). 0

Answer»

⇒ $(\sqrt {2\sqrt {3\sqrt {3\sqrt {3\sqrt 3 } } \;} } )$

⇒ $(\sqrt {2\sqrt {3\sqrt {3\sqrt {3 \TIMES {3^{\FRAC{1}{2}}}} } \;} } )$

⇒ $(\sqrt {2\sqrt {3\sqrt {3\sqrt {{3^{\frac{3}{2}}}} } \;} } )$ ⇒ $(\sqrt {2\sqrt {3\sqrt {3 \times {3^{\frac{3}{4}}}} \;} } )$ ⇒ $(\sqrt {2\sqrt {3\sqrt {{3^{\frac{7}{4}}}} \;} } )$

⇒ $(\sqrt {2\sqrt {3 \times {3^{\frac{7}{8}}}\;} } )$⇒ $(\sqrt {2 \times {3^{\frac{{15}}{{16}}}}} )$

⇒ √2 × √(3(15/16))

⇒ 2(1/2) × 3(15/32)

POWER of 3 is 15/32.

140.

Find the smallest fraction.1). (12/5 + 8/3)2). (11/4 + 7/2)3). (10/3 + 9/4)4). (9/2 + 6/5)

Answer»

Solving the FRACTIONS and CONVERTING then into decimal,

⇒ (12/5 + 8/3) = 76/15 = 5.067

⇒ (11/4 + 7/2) = 25/4 = 6.25

⇒ (10/3 + 9/4) = 67/12 = 5.583

⇒ (9/2 + 6/5) = 57/10 = 5.7

∴ The SMALLEST FRACTION is (12/5 + 8/3)

141.

1). 152). 203). 304). 23

Answer»

Value of $(\sqrt[3]{{1331}}{\rm{}} + {\rm{}}\sqrt {729}- \sqrt[3]{{512}})$ = 11 + 27 – 8 = 30

142.

II. 4√2 > 2√81). Only I2). Only II3). Neither I nor II4). Both I and II

Answer»

Statement I:

2√3 > 3√2

⇒ (2√3)2 > (3√2)2

⇒ 12 > 18 which is not TRUE

So, statement I is not true

Statement II:

4√2 > 2√8 = 4√2

⇒ 4√2 > 4√2 which is not true

∴ Both statements are not true
143.

Convert to fraction 0.677777……..1). \(\frac{{61}}{{90}}\)2). \(\frac{{63}}{{90}}\)3). \(\frac{{67}}{{90}}\)4). \(\frac{{61}}{{91}}\)

Answer»

$(\RIGHTARROW .67777 = .6\bar 7 = \frac{{67 - 6}}{{90}} = \frac{{61}}{{90}})$

144.

1). 17202). 3003). 4804). 400

Answer»

Given expression is,

84% of 2500 – 420 = 350% of ?

$(\begin{array}{l} \Rightarrow \frac{{84}}{{100}} \times 2500 - 420 = \frac{{350}}{{100}} \times ?\\ \Rightarrow 84 \times 25 - 420 = \frac{{350}}{{100}} \times \;?\\ \Rightarrow 2100 - 420 = \frac{{35}}{{10}} \times \;?\\ \Rightarrow 1680= \frac{{35}}{{10}} \times \;?\\ \Rightarrow {\RM{\;}}? = \frac{{1680\times 10}}{{35}} = 480 \end{array})$

∴ ? = 480

145.

9876 + 34.567 - ? = 9908.2211). 23.452). 234.63). 2.3684). 2.346

Answer»

9876 + 34.567 - ? = 9908.221

⇒ 9910.567 - ? = 9908.221

⇒ ? = 9910.567 - 9908.221 = 2.346
146.

(5981 - √3136) × 0.75 = ?1). 4423.752). 4443.753). 4533.754). 4233.75

Answer»

GIVEN EXPRESSION,

⇒ (5981 - √3136) × 0.75 =?

⇒ ? = (5981 - 56) × 0.75

⇒ ? = 5925 × 0.75

⇒ ? = 4443.75

147.

Simplify: \({\left[ {{{32}^{\frac{4}{5}}} \times {2^{ - 2}} \div {8^0}} \right]^{\frac{1}{2}}}\)1). 02). 13). 24). 1/2

Answer»

$(\BEGIN{array}{L}{\left[ {{{32}^{\frac{4}{5}}} \times {2^{ - 2}} \div {8^0}} \right]^{\frac{1}{2}}}\\ = \;{\left[ {{2^{5 \times \frac{4}{5}}} \times {2^{ - 2}} \div {8^0}} \right]^{\frac{1}{2}}}\\ = {\left[ {{2^4} \times {2^{ - 2}} \div 1} \right]^{\frac{1}{2}}}\end{array})$

= 22 × 1/2

= 2

148.

\(\left[ {\frac{{3\sqrt 2 }}{{\sqrt 3+ \sqrt 6 }} - \frac{{4\sqrt 3 }}{{\sqrt 6+ \sqrt 2 }} + \frac{{\sqrt 6 }}{{\sqrt 2+ \sqrt 3 }}} \right]\) is simplified to1). √62). √33). √24). 0

Answer»
149.

97846 – 43241 + 50253 =? – 37271). 1085852).3). 1404524). 142054

Answer»

97846 – 43241 + 50253 =? – 3727

⇒ 54605 + 50253 =? – 3727

⇒ 104858 + 3727 =?

⇒ ? = 108585
150.

The value of \({\left( {\frac{{64}}{{625}}} \right)^{0.5}} \times {\left( {\frac{1}{{16}}} \right)^{0.25}} \times {3^2} \times {\left( {\frac{{ - 5}}{4}} \right)^2}\) is1). 2/92). -2/93). 9/44). -9/2

Answer»

The EQUATION can be SIMPLIFIED as

$(\frac{8}{{25}} \times \;\frac{1}{2} \times 9 \times \;\frac{{25}}{16})$

= 9/4