InterviewSolution
Saved Bookmarks
| 1. |
Find x, given \(5{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}:\)1). x = 12). x = -13). x = -24). x = 0 |
|
Answer» $(\begin{array}{l}5{\left( {\sqrt 5 } \right)^{X + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^2}{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^{x + 6 + 2}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\end{array})$ ⇒ x = 1 |
|