1.

Find x, given \(5{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}:\)1). x = 12). x = -13). x = -24). x = 0

Answer»

$(\begin{array}{l}5{\left( {\sqrt 5 } \right)^{X + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^2}{\left( {\sqrt 5 } \right)^{x + 6}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\\{\left( {\sqrt 5 } \right)^{x + 6 + 2}} = {\left( {\sqrt 5 } \right)^{2x + 7}}\end{array})$

From laws of INDICES: x + 8 = 2x + 7

⇒ x = 1


Discussion

No Comment Found