InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
II. (1.12)2 + (10.3)2 + (1.05)2 > 108.31). Only I2). Only II3). Both I and II4). Neither I nor II |
|
Answer» Solving for STATEMENT I, (0.7)2 + (0.07)2 + (11.1)2 > 123.8 ⇒ 0.49 + 0.0049 + 123.21 > 123.8 ⇒ 123.7049 > 123.8 (wrong) ⇒ L.H.S. not greater than R.H.S. Solving for statement II, (1.12)2 + (10.3)2 + (1.05)2 > 108.3 ⇒ 1.2544 + 106.09 + 1.1025 > 108.3 ⇒ 108.4469 > 108.3 ⇒ L.H.S. > R.H.S. ∴ Only Statement II is TRUE. |
|
| 152. |
15 ÷ 12.5 × 35 + 42.8 × 2.5 = ?2 + 1021). 82). 63). 7.54). 5.2 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step -1- PARTS of an equation enclosed in 'Brackets' must be solved FIRST, and in the BRACKET, Step -2- Any mathematical 'Of' or 'Exponent' must be solved next, Step -3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step -4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 15 ÷ 12.5 × 35 + 42.8 × 2.5 = ?2 + 102 ⇒ (15 ÷ 12.5) × 35 + 42.8 × 2.5 = ?2 + 102 ⇒ (1.2 × 35) + (42.8 × 2.5) = ?2 + 102 ⇒ 42 + 107 = ?2 + 102 ⇒ 149 – 100 = ?2 ⇒ ?2 = 49 ∴ ? = 7 |
|
| 153. |
The simplest form of 3565/1495 is1). 31/132). 43/193). 23/134). 31/23 |
|
Answer» ⇒ 3565/1495 ⇒ 31/13? 713 and 299 are MULTIPLES of 23. |
|
| 154. |
31.87 + 87.80 – 55.11 = 12.84 × ? – 25.881). 72). 43). 104). 9 |
|
Answer» Given expression is, 31.87 + 87.80 – 55.11 = 12.84 × ? – 25.88 We can WRITE the given values as: 31.87 ≈ 32 and 87.80 ≈ 88 55.11 ≈ 55 and 12.84 ≈ 13 and 25.88 ≈ 26 Then, ⇒ 32 + 88 – 55 = 13 × ? – 26 ⇒ 120 – 55 = 13 × ? – 26 ⇒ 65 = 13 × ? – 26 ⇒ 65 + 26 = 13 × ? ⇒ 13 × ? = 91 ⇒ ? = 91/13 ⇒ ? ≈ 7 |
|
| 155. |
1). Only I2). Only II 3). Neither I nor II 4). Both I and II |
|
Answer» $(\sqrt {676}+ \sqrt {6.76\;}+ \sqrt {0.0676}= 27.76)$ ⇒ 26 + 2.6 + 0.26 = 27.7 ⇒ 28.86 = 27.7 So, statement 1 is false. $(\sqrt {339 + 36 + 49 + 81}= 19)$ $(\Rightarrow \sqrt {339 + 6 + 7 + 9}= 19)$ ⇒ √361 = 19 ⇒ 19 = 19 So, statement 2 is true. |
|
| 156. |
\(\frac{1}{{\sqrt {729.23} - \sqrt {624.89} }} + \sqrt {729.23} - \sqrt {624.89}\)1). 0.042). 1.493). 2.54). 1.77 |
|
Answer» $(\frac{1}{{\sqrt {729.23} - \sqrt {624.89} }} + \sqrt {729.23} - \sqrt {624.89} \approx \frac{1}{{\sqrt {729} - \sqrt {625}}} + \sqrt {729} - \sqrt {625} \approx \frac{1}{{27 - 25}} + 27 - 25 \approx \frac{1}{2} + 2 \approx \frac{5}{2} \approx 2.5)$ |
|
| 157. |
If p/q = r/s = t/u = √5, then what is the value of [(3p2 + 4r2 + 5t2) /(3q2 + 4s2 + 5u2) ]?1). 1/52). 53). 254). 60 |
|
Answer» <P>Here, p = √5q ⇒ R = √5s ⇒ t = √5u Now, substituting above values in REQUIRED value ⇒ [(3(√5q) 2 + 4(√5s) 2 + 5(√5u) 2) /(3q2 + 4s2 + 5u2) ] ⇒ 5[(3q2 + 4s2 + 5u2)/(3q2 + 4s2 + 5u2) ] ∴ answer is 5 |
|
| 159. |
4.25% of 740 – ?% of 680 = 7.651). 7.52). 6.53). 5.54). 3.5 |
|
Answer» Follow BODMAS to SOLVE this question, as per the order given below, Step-1: Parts of an equation ENCLOSED in ‘BRACKETS’ must be solved first, Step-2: Any mathematical ‘Of’ or ‘Exponent’ must be solved next, Step-3: Next, the parts of the equation that contains ‘Division’ and ‘Multiplication’ are calculated, Step-4: Last but not the least, the parts of the equation that contains ‘Addition’ and Subtraction’ should be calculated. Given expression,? ⇒ 4.25% of 740 – ?% of 680 = 7.65 $(\BEGIN{array}{L} \Rightarrow \frac{{4.25}}{{100}}\; \times \;740 - \;\frac{?}{{100}}\; \times \;680\; = \;7.65\\ \Rightarrow {\rm{\;}}31.45\; - \;\frac{?}{{100}}\; \times \;680\; = \;7.65\\ \Rightarrow \frac{?}{{100}}\; \times \;680\; = \;31.45\; - \;7.65\\ \Rightarrow ?\; = \;23.8\; \times \;\frac{{100}}{{680}}\; \end{array})$ ⇒ ? = 3.5 |
|
| 160. |
1). (6 + 6 + 6)22). {(6 + 6)2}23). (6 × 6 × 6)24). 6 + 62 + (6)3 |
|
Answer» Solving the GIVEN options: (6 + 6 + 6)2 = 182 = 324 {(6 + 6)2}2 =(122)2 = 20736 (6 × 6 × 6)2 = (216)2 = 46656 6 + 62 + (6)3 = 6 + 36 + 216 = 258 ∴ On COMPARING all the options, (6 × 6 × 6)2 is the largest number. |
|
| 161. |
Among the numbers \(\sqrt 2 ,\;\sqrt[2]{8},\sqrt[2]{9},\sqrt[4]{{16}},\sqrt[5]{{32}}\) the greatest one is?1). \(\sqrt 2\)2). \(\sqrt[2]{9}\)3). \(\sqrt[4]{{16}}\)4). \(\sqrt[5]{{32}}\) |
| Answer» | |
| 162. |
Two fractions are such that their product is 4 and sum is148/35. Find the two fractions.1). 6/15, 10/32). 6/5, 10/33). 7/2, 8/74). 10/7, 14/5 |
|
Answer» LET the two fractions be ‘x’ and ‘y’. ⇒ xy = 4and x + y = 148/35 ⇒ x = 4/y ⇒ (4/y) + y = 148/35 $(\begin{array}{l} \Rightarrow {\rm{\;}}\frac{{4 + {y^2}}}{y}\; = \;\frac{{148}}{{35}}\\ \Rightarrow {\rm{\;}}140 + 35{y^2}\; = \;148y\\ \Rightarrow {\rm{\;}}35{y^2} - 148y + 140\; = \;0\\ \Rightarrow {\rm{\;}}y\; = \;\frac{{148\; \PM \SQRT {{{148}^2} - 4 \times 35 \times 140} }}{{70}}\; = \;\frac{{148\; \pm \sqrt {2304} }}{{70}}\; = \;\frac{{148 \pm 48}}{{70}}\\ \Rightarrow {\rm{\;}}y\; = \;\frac{{100}}{{70}}\;or\frac{{196}}{{70}}\; = \;\frac{{10}}{7}\;or\frac{{14}}{5}\\ \Rightarrow {\rm{\;}}x\; = \;\frac{4}{y}\; = \;\frac{4}{{\frac{{10}}{7}}}\; = \;\frac{{28}}{{10}}\; = \;\frac{{14}}{5}\;or\;x\; = \;\frac{4}{y}\; = \;\frac{4}{{\frac{{14}}{5}}}\; = \;\frac{{20}}{{14}}\; = \;\frac{{10}}{7} \end{array})$ ∴ The two fractions are 10/7 and 14/5. |
|
| 163. |
The Value of \({\left( {\frac{{4 + 2\sqrt 3 }}{{4 - 2\sqrt 3 }} + \;\frac{{3 - \sqrt 3 }}{{2 + 2\sqrt 3 }} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}}\) is1). (4 + 2√3)99992). (3 – √3)99993). (√3)99994). None of these |
|
Answer» $({\LEFT( {\frac{{4 + 2\sqrt 3 }}{{4 - 2\sqrt 3 }} + \;\frac{{3 - \sqrt 3 }}{{2 + 2\sqrt 3 }} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ $( = {\left( {\left( {\frac{{4 + 2\sqrt 3 }}{{4 - 2\sqrt 3 }} \times \frac{{4 + 2\sqrt 3 }}{{4 + 2\sqrt 3 }}} \right) + \;\left( {\frac{{3 - \sqrt 3 }}{{2 + 2\sqrt 3 }} \times \frac{{2 - 2\sqrt 3 }}{{2 - 2\sqrt 3 }}} \right) - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ $( = {\left( {\frac{{16 + 12 + 16\sqrt 3 }}{{16 - 12}} + \frac{{6 - 6\sqrt 3 - 2\sqrt 3 + 6}}{{4 - 12}} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ $( = {\left( {\frac{{28 + 16\sqrt 3 }}{4} + \frac{{12 - 8\sqrt 3 }}{{ - 8}} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}}{\rm{\;}})$ $( = {\left( {\frac{{28 + 16\sqrt 3 }}{4} - \frac{{12 - 8\sqrt 3 }}{8} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ $( = {\left( {\frac{{44 + 40\sqrt 3 }}{8} - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ $( = {\left( {\frac{{11}}{2} + 5\sqrt 3 - \frac{{11}}{2} - 5\sqrt 3 } \right)^{9999}})$ = 0 |
|
| 164. |
1). 1202). 1103). 1504). 130 |
|
Answer» 0.06 × ? × 0.216 = 1.944 ⇒ ? × 0.01296 = 1.944 ⇒ ? = 1.944/0.01296 = 150 ∴ ? = 150 |
|
| 165. |
1). 19902). 20303). 28004). 2250 |
|
Answer» The GIVEN expression is: 1301 ÷ 14.99 × 19.91 + 500.99 = ? Here, 14.99 ≈ 15 19.91 ≈ 20 500.99 ≈ 501 Now, the expression will become: ? ≈ 1301 ÷ 15 × 20 + 501 ⇒ ? ≈ 433.6 × 4 + 501 ⇒ ? ≈ 1735 + 501 ⇒ ? ≈ 2236 |
|
| 166. |
(?)3 × 10 = 13230 ÷ (9.261 ÷ 7)1). 102). 253). 1254). 0.5 |
|
Answer» FOLLOW BODMAS RULE to solve this question, as PER the order given below, Step-1: Parts of an EQUATION enclosed in 'Brackets' must be solved first, and in the BRACKET, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (?)3 × 10 = 13230 ÷ (9.261 ÷ 7) ⇒ (?)3 × 10 = 13230 ÷ (1.323) ⇒ (?)3 × 10 = 10000 ⇒ (?)3 = 1000 ⇒ (?)3 = (10)3 ⇒ ? = 10 |
|
| 167. |
The value of \(\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}\) is1). 16 + √32). 14 + √33). 12 - √34). 12 + √3 |
| Answer» | |
| 168. |
(25% of 100 – 45% of 90 + 60% of 100) × 5% of 1001). 112.42). 222.53). 321.64). 414 .2 |
|
Answer» Follow BODMAS rule to solve this question, as per the order is given below, Step - 1 - Parts of an equation enclosed in 'Brackets' MUST be solved first, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that CONTAINS 'Division' and 'Multiplication' are calculated, Step - 4 - LAST but not least, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated. 25% of 100 = 25 45% of 90 = 40.5 60% of 100 = 60 5% of 100 = 5 ⇒ (25 – 40.5 + 60) × 5 ⇒ 44.5 × 5 ⇒ 222.5 ∴ Value is 222.5 |
|
| 169. |
If \(a = 124,\sqrt[3]{{a\left( {{a^2} + 3a + 3} \right) + 1}} = ?\)1). 52). 43). 1234). 125 |
|
Answer» ⇒ Given: $(a = 124,)$ $(\RIGHTARROW \;\sqrt[3]{{a\LEFT( {{a^2} + 3a + 3} \right) + 1}} = ?)$ ⇒ We PUT the value of a in above equation $(\Rightarrow \sqrt[3]{{\;124\left( {{{124}^2} + \left( {3 \times 124} \right) + 3} \right) + 1}})$ $(\Rightarrow \sqrt[3]{{124\left( {15376 + 372 + 3} \right) + 1}})$ ⇒ 125 |
|
| 170. |
Compute: 4082 ÷ 157 – 231). - 32). 33). 2041/674). 2014/67 |
| Answer» ∴ 4082 ÷ 157 – 23 = 3 | |
| 171. |
Divide 0.00092 by 0.0081). 1152). 1.153). 0.1154). 0.000115 |
|
Answer» 0.00092 ÷ 0.008 $(= \frac{{920}}{8} \times \frac{{{{10}^{ - 6}}}}{{{{10}^{ - 3}}}})$ = 115 × 10-3 = 0.115 |
|
| 172. |
Value of the expression 3 – {16 ÷ 5 – (6 ÷ (7 - 2))} is1). 12). 23). 64). 0 |
|
Answer» Follow BODMAS rule to solve this QUESTION, as per the order given below, Step-1: Parts of an equation enclosed in 'Brackets' MUST be solved first, Step-2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Using BODMAS rule 3 – {16 ÷ 5 – (6 ÷ (7 - 2))} ⇒ 3 – {16 ÷ 5 – (6 ÷ (5))} ⇒ 3 – {(16/5) – (6/5)} ⇒ 3 – (10/5) = 3 - 2 = 1 |
|
| 173. |
1). 6666.182). 6633.183). 6233.184). 6133.18 |
|
Answer» GIVEN expression, 2434.56 + 6543.42 - 1298.42 - 1046.38 = ? ⇒ 2434.56 + 6543.42 - (1298.42 + 1046.38) = ? ⇒ 8977.98 - 2344.8 = ? ⇒ ? = 6633.18 |
|
| 174. |
Due to deflation, there is a decrease of \(33\frac{1}{3}\%\) in the price of bananas. If 3 more bananas are available for Rs. 18, what is the difference between the initial and present rate of bananas per dozen is1). Rs. 42). Rs. 83). Rs. 124). Rs. 16 |
|
Answer» LET initial PRICE of banana be Rs. x Initial number of bananas in Rs. 18 = 18/x New price of banana = x – ((100/3)/100) × x = 2x/3 New number of bananas in Rs. 18 = 18/(2x/3) = 27/x 27/x – 18/x = 3 x = 3 Difference in rate of dozen banana = 12(x) – 12(2x/3) = 36 – 24 = Rs. 12 |
|
| 175. |
1). 27369002). 26388003). 26585604). 2716740 |
|
Answer» 8796 × 223 + 8796 × 77 = 8796 × (223 + 77)[by DISTRIBUTIVE LAW] = (8796 × 300) = 2638800. |
|
| 176. |
1). \(3\frac{1}{4}\)2). \(5\frac{5}{{12}}\)3). \(3\frac{3}{4}\)4). \(2\frac{7}{{12}}\) |
|
Answer» $(\begin{array}{l} 6\FRAC{1}{2} - 2\frac{3}{6}\; = \;? - 1\frac{5}{{12}}\\ \Rightarrow \frac{13}{2} - \frac{{15}}{6} + \frac{{17}}{{12}} = ?\\ \Rightarrow ? = \frac{{13 \times 6 - 15 \times 2\; + \;17}}{{12}}\\ \Rightarrow ? = \frac{{65}}{{12}} = 5\frac{5}{{12}} \end{array})$ |
|
| 177. |
1). 12). Y3). 2X4). 0 |
| Answer» | |
| 178. |
339.6% of 799.98 + 77.8 % of 1100.76 = ?1). 34282). 34783). 35284). 3578 |
|
Answer» Rounding off the values in the GIVEN problem ⇒ (340% of 800) + (78% of 1100) ⇒ (340 × 8) + (78 × 11) ⇒ (340 × 8) + (78 × 11) ⇒ 2720 + 858 ⇒ 3578 ∴ Approximate value is 3578 |
|
| 179. |
Simplify: \(\left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right)\left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right)\)1). 32). √33). 3(2/3)4). 8 |
|
Answer» $(\LEFT( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right)\left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right) = \left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right)\left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right) = {\left( {\sqrt {\sqrt[4]{{\sqrt[3]{{{3^8}}}}}} } \right)^2} = {\left( {{{\left( {{3^8}} \right)}^{1/3}}} \right)^{1/4}} ={\left({3^{8/3}} \right)^{1/4}} = {3^{2/3}})$ |
|
| 180. |
The value of \(\frac{{{{\left( {0.150 + 0.225} \right)}^2} - {{\left( {0.150 - 0.225} \right)}^2}\;}}{{0.150 \times 0.225}}\)1). 22). 43). 0.2304). 0.285 |
|
Answer» The Given expression, ⇒ $(? = \FRAC{{{{\left( {0.150 + 0.225} \right)}^2} - {{\left( {0.150 - 0.225} \right)}^2}\;}}{{0.150 \times 0.225}})$ (A + B)2 = A2 + 2AB + B2 (A - B)2 = A2 - 2AB + B2 ⇒ $(? = \frac{{{{0.150}^2} + 2 \times 0.150 \times 0.225 + {{0.225}^2} - {{0.150}^2} + 2 \times 0.150 \times 0.225 - {{0.225}^2}}}{{0.150 \times 0.225}})$ ⇒ $(? = \frac{{4 \times 0.150 \times 0.225}}{{0.150 \times 0.225}})$ ∴ ? = 4 |
|
| 181. |
1). \(111\frac{1}{6}\)2). \(111\frac{5}{6}\)3). \(555\frac{5}{6}\)4). \(555\frac{1}{6}\) |
|
Answer» $(\Rightarrow 111\frac{1}{2} + 111\frac{1}{6} + 111\frac{1}{{12}} + 111\frac{1}{{20}} + 111\frac{1}{{30}})$ ⇒ 111 + ½ + 111 + 1/6 + 111 + 1/12 + 111 + 1/20 + 111 + 1/30 ⇒ (111 + 111 + 111 + 111 + 111) + (1/2 + 1/6 + 1/12 + 1/20 + 1/30) ⇒ (555) + (30 + 10 + 5 + 3 + 2)/60 ⇒ (555) + 50/60 ⇒ 555 + 5/6 $(\Rightarrow 555\frac{5}{6})$ |
|
| 182. |
If (1/4 of x) - (4/5 of 6/7) equals -9/7, then value of x is1). -122). -2.43). -3.64). -14 |
|
Answer» (1/4 of X) - (4/5 of 6/7) = -9/7 ¼ × x – (4/5) × (6/7) = –9/7 x/4 = 24/35 – 9/7 x/4 = –21/35 x = –2.4 |
|
| 183. |
In an examination a student must get 36% marks to pass. A student who gets 190 marks failed by 35 marks. The total marks in that examination is:1). 5002). 6253). 8104). 450 |
|
Answer» A student who gets 190 marks failed by 35 marks. ⇒ 190 + 35 = (36x/100) ⇒ 225 = (36x/100) ⇒ x = (225 × 100)/36 ⇒ x= 625 ∴ the total marks = 625 |
|
| 184. |
Which of the following fractions is less than \(\frac{8}{9}\) and greater than \(\frac{1}{4}\)?1). \(\frac{1}{5}\)2). \(\frac{{23}}{{24}}\)3). \(\frac{{11}}{{12}}\)4). \(\frac{{17}}{{24}}\) |
|
Answer» CONVERTING each FRACTION into decimal. 8/9 = 0.89 1/4= 0.25 Converting the options 1/5 = 0.2 23/24 = 0.96 11/12 = 0.92 17/24 = 0.71 ∴ Only option 4 is less than 8/9 and GREATER than 1/4 |
|
| 185. |
In a box containing LED lights, 12% of them are not working and 66 of them are in good condition. If the box cannot be opened for checking before payment, and each LED light costs Rs. 15, calculate the total amount to be paid for the box.1). Rs. 9902). Rs. 10503). Rs. 11254). Rs. 1185 |
|
Answer» Let the total number of LED lights in the box be ‘m’ % of LED lights in good CONDITION = (100 – 12)% = 88% ⇒ 88% of m = 66 ⇒ m = (66 × 100)/88 = 75 ∴ Total amount to be PAID for box = 75 × 15 = RS. 1125 |
|
| 186. |
1). 7/22). 2/73). 3/44). 4/3 |
| Answer» | |
| 187. |
1). \(5\frac{{13}}{{24}}\)2). \(4\frac{{13}}{{24}}\)3). \(5\frac{{11}}{{24}}\)4). \(6\frac{{13}}{{24}}\) |
|
Answer» On solving the equation by taking LCM and using BODMAS: $(\BEGIN{array}{l} = 4\frac{1}{6} + 7\frac{1}{4} - 5\frac{7}{8}\\ = \frac{{25}}{6} + \frac{{29}}{4} - \frac{{47}}{8}\END{array})$ Lcm OF 6, 4 and 8 is 24 $(= \frac{{100 + 174 - 141}}{{24}})$ =133/24 $(= 5\frac{{13}}{{24}})$ |
|
| 188. |
1). 7232). 7923). 8124). 756 |
|
Answer» ACCORDING to the GIVEN information, 5.991 ≈ 6 √439 ≈ 21 62 × 21 = 756 |
|
| 189. |
Simplify (11.998)3 = ?1). 1727.1362). 1331.1363). 1685.1364). 1700.136 |
|
Answer» We know that (a – B)3 = a3 – b3 – 3AB(a – b) So, (11.998)3 ⇒ (12 – 0.002)3 ⇒ (12)3 – (0.002)3 – 3(12)(0.002)(12 – 0.002) ⇒ 1728 – 0.000000008 – 0.863856 ⇒ 1727.136 |
|
| 190. |
Sum of X and Y age 7 year ago is 86. X age 20 year ago is equal to Y age 4 year ago. Find the age of Y four year hence.1). 48 years2). 50 years3). 46 years4). 52 years |
|
Answer» Let the PRESENT AGE of X and Y are x and y respectively. Sum of X and Y age 7 YEAR ago is 86 ⇒ (x - 7) + (y - 7) = 86 ⇒ x + y = 100-----(i) X age 20 year ago is equal to Y age 4 year ago. x - 20 = y - 4 ⇒ x - y = 16-----(ii) Solving the equation (i) and (ii) Present age of X = 58 years Present age of Y = 42 years Age of Y four year hence = 42 + 4 = 46 years |
|
| 191. |
Given, (23x + 1 × 42y + 1 = 2z – x). If (x + y) = 1, find the value of z.1). 32). 53). 74). 9 |
|
Answer» ⇒ 23x + 1 × 22(2y + 1) = 2z – x ⇒ 2(3x + 1 + 4y + 2) = 2z – x Equating the powers of 2, ⇒ 3x + 4y + 3 = z – x ⇒ z = 4x + 4y + 3 ⇒ z = 4(x + y) + 3 Putting (x + y) = 1, ∴ z = 4 + 3 = 7 |
|
| 192. |
252 ÷ 102 × 42 – 3 × 52 = 5?1). 22). 43). 34). 5 |
|
Answer» 252 ÷ 102 × 42 – 3 × 52 = 5? ⇒ 54 ÷ (52 × 22) × 24 – 75 = 5? ⇒ 54/ (52 × 22) × 24 – 75 = 5? ⇒ 52/22 × 24 – 75 = 5? ⇒ 52 × 22 – 75 = 5? ⇒ 100 – 75 = 5? ⇒ 25 = 5? ∴ ? = 2 |
|
| 193. |
The simplified form of ((√3)6 + (√3)-6) is:1). 729/272). 244/273). 730/274). 82/27 |
|
Answer» ((√3)6 + (√3)-6)? = 33 + 3-3 = 33 + 1/33 = (36 + 1)/33 = (729 + 1)/27 = 730/27 |
|
| 194. |
Find the value of X in the following expression: √12.96 × √7.84 ÷ √3.24 × √31.36 = X1). 31.362). 5.63). 11.24). 13.36 |
|
Answer» ⇒ √12.96 × √7.84 ÷ √3.24 × √31.36 = X ⇒ X = 3.6 × 2.8 ÷ 1.8 × 5.6 ⇒ X = 31.36 |
|
| 195. |
If (2 + √3)a = (2 - √3)b = 1 then the value of \(\frac{1}{a} + \frac{1}{b}\) is1). 12). 23). 2√34). 4 |
| Answer» | |
| 196. |
Simplify: \(\frac{5}{{28}} \div \frac{{28}}{{35}} \div \frac{{20}}{{112}}\)1). 4/52). 5/43). 4/74). 7/4 |
|
Answer» $(\begin{array}{L}\FRAC{5}{{28}} \div \frac{{28}}{{35}} \div \frac{{20}}{{112}}\; = \;\frac{5}{{28}} \div \frac{4}{5} \div \frac{5}{{28}}\; = \;\frac{{\frac{5}{{28}} \div \frac{4}{5}}}{{\frac{5}{{28}}}}\; = \;\frac{{\frac{{25}}{{112}}}}{{\frac{5}{{28}}}}\; = \;\frac{5}{4}\\\therefore \;\frac{5}{{28}} \div \frac{{28}}{{35}} \div \frac{{20}}{{112}}\; = \;\frac{5}{4}\end{array})$ |
|
| 197. |
2(11.25 × 6.5) + (5 × 85.87) – (33.52 + 46.15) = ?1). 4692). 4683). 4964). 497 |
|
Answer» Follow BODMAS RULE to SOLVE this question, as per the order GIVEN below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression, 2(11.25 × 6.5) + (5 × 85.87) –$ (33.52 + 46.15) ⇒ 2(73.125) + 429.35 –$ 79.67 ⇒ 146.25 + 429.35 –$ 79.67 ⇒ 495.93 ≈ 496 ∴ $? = 496 |
|
| 198. |
Calculate the value of (51/4 - 1)(53/4 + 51/2 + 51/4 + 1)1). 52). 43). 104). 25 |
|
Answer» Laws of Indices: 2. am ÷ an = a{m - n} 3. (am )n = amn 4. (a)-m = 1/am 5. (a)m/n = n√am 6. (a)0 = 1 (51/4 – 1)(53/4 + 51/2 + 51/4 + 1) ⇒ (51/4 × 53/4) + (51/4 × 51/2) + (51/4 × 51/4) + 51/4 – 53/4 – 51/2 – 51/4– 1 ⇒ 5 + 53/4 + 51/2 + 51/4 – 53/4 – 51/2 – 51/4– 1 ⇒ 5 – 1 ⇒ 4 |
|
| 199. |
1). 32). 163). 174). 30 |
|
Answer» 22 - 12 + 42 - 32 + 62 - 52 = (22 - 12) + (42 - 32) + (62 - 52) = 10 + 10 + 10 = 30 |
|
| 200. |
1). 102). 203). 304). 45 |
|
Answer» ? = 8.97 – 4.05 + 9.02 ÷ 2.99 × 4.04 + (1.56)2 Rewriting equation with approximate values: ⇒ ? ≈ 9 – 4 + 9 ÷ 3 × 4 + (1.6)2 ⇒ ? = 9 – 4 + 3 × 4 + 2.56 ⇒ ? = 5 + 12 + 2.6 ⇒ ? = 19.6 ≈ 20 ∴ ? = 20 |
|