InterviewSolution
| 1. |
Simplify \(\left( {3\frac{1}{5}of\left( {2\frac{2}{3}of\;3\frac{1}{2}} \right)} \right) \div 1\frac{1}{3} \sim \left( {2\frac{1}{3}of\left( {4\frac{1}{5}of1\frac{1}{3}} \right)} \right)of\;2\frac{2}{3}\)1). 3 ∶ 72). 11 ∶ 133). 9 ∶ 144). 3 ∶ 13 |
|
Answer» Follow BODMAS RULE to SOLVE this question, as per the ORDER given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. $(\begin{array}{l} \left( {3\frac{1}{5}of\;\left( {2\frac{2}{3}of3\frac{1}{2}} \right)} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\left( {4\frac{1}{5}of1\frac{1}{3}} \right)} \right)of\;2\frac{2}{3}\\ = \left( {3\frac{1}{5}of\;\left( {\frac{8}{3}\; \times \;\frac{7}{2}} \right)} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\left( {\frac{{21}}{5}\; \times \;\frac{4}{3}} \right)} \right)of\;2\frac{2}{3}\\ = \left( {3\frac{1}{5}\;of\;\frac{{28}}{3}} \right) \div 1\frac{1}{3}:\left( {2\frac{1}{3}of\frac{{28}}{5}} \right)of\;2\frac{2}{3}\\ = \left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right) \div \frac{4}{3}:\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)of\;\frac{8}{3}\; = \;\left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right)\; \times \;\frac{3}{4}:\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)\; \times \;\frac{8}{3}\\ = \frac{{\left( {\frac{{16}}{5}\; \times \;\frac{{28}}{3}} \right)\; \times \;\frac{3}{4}}}{{\left( {\frac{7}{3}\; \times \;\frac{{28}}{5}} \right)\; \times \;\frac{8}{3}}}\; = \;\frac{9}{{14}} \end{array})$ |
|