InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
1). 1/6 2). -1/6 3). 1/54). -1/5 |
|
Answer» ⇒ 1/3(12x/5 - 1/2) + 6/5 = 7/6 ⇒ 4x/5 - 1/6 + 6/5 = 7/6 ⇒ 4x/5 = 7/6 + 1/6 - 6/5 ⇒ 4x/5 = 2/15 ⇒ X = (2/15)/(4/5) ∴ x = 1/6 |
|
| 202. |
Find the value of ‘?’ in 512 × 125 ÷ 15625 = 3125 × 25?1). 42). 33). 24). 1 |
|
Answer» LAWS of Indices: 1. am × an = a{m + n} 2. am ÷ an = a{m - n} 3. (am )n = amn 4. (a)-m = 1/am 5. (a)m/n = n√am 6. (a)0 = 1 ⇒ 512 × 125 ÷ 15625 = 3125 × 25? ⇒ 512 × 53 ÷ 56 = 55 × (52)? ⇒ 512 + 3 - 6 = 55 + 2? ⇒ 59 = 55 + 2? ⇒ 9 = 5 + 2? ⇒ ? = 4/2 ∴ ? = 2 |
|
| 203. |
If x +1 = \(\sqrt 3\), then the value of \({x^2} + 2\sqrt 3\)1). 22). 43). 54). -2 |
|
Answer» x = √3-1 Put the value of x in given equation ⇒ x2 + 2√3 = (√3 - 1)2 + 2√3 ⇒ 3 + 1 - 2√3 + 2√3 = 4 |
|
| 204. |
1). 3452). 3543). 3254). 344 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order given below, Step - 1 - Parts of an equation enclosed in 'Brackets' must be solved FIRST, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step - 4 - Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. x = 172 + [(132 ÷ 6 × 5 + 78 × 4 ÷ 3) - {125 ÷ (160 ÷ 32) + 7}] ⇒ x = 172 + [(22 × 5 + 312 ÷ 3) - {125 ÷ 5 + 7}] ⇒ x = 172 + [(110 + 104) - {25 + 7}] ⇒ x = 172 + [214 - 32] ⇒ x = 172 + 182 ⇒ x = 354 |
|
| 205. |
\(3\frac{4}{7} \times 2\frac{3}{5} \times 1\frac{1}{6} \div 2\frac{5}{7} = ?\)1). 22). 43). 64). 8 |
|
Answer» ⇒ (25/7) × (13/5) × (7/6) ÷ (19/7) = ? $(\Rightarrow \FRAC{{25}}{7} \TIMES \frac{{13}}{5} \times \frac{7}{6} \times \frac{7}{{19}} = ?)$ ⇒ (25 × 13 × 7) ÷ (5 × 6 × 19) = ? ⇒ 2275/570 = ? ∴ ? = 3.99 ∼ 4 |
|
| 206. |
125 - 73 + 48 - 137 + 99 = ?1). 2372). 623). -374). 52 |
|
Answer» ⇒ ? = 52 + 48 - 137 + 99 ⇒ ? = 100 - 137 + 99 ⇒ ? = -37 + 99 ∴ ? = 62 |
|
| 207. |
1). 1/52). -1/53). 54). -5 |
| Answer» | |
| 208. |
(1875.96 - 500.45) ÷ (900 + 399.8) = ?1). 42). 13). 34). 5 |
|
Answer» Solving the Brackets, 1875.96 ≈ 1876 500.45 ≈ 500 1876 - 500 = 1376 399.8 ≈ 400 900 + 400 = 1300 Solving the division, 1376 ÷ 1300 ≈ 1.058 ≈ 1 ∴ 1 should come in the place of the question MARK |
|
| 209. |
1). 582). 783). 984). 118 |
|
Answer» Trick: No need to do CALCULATIONS. Just observe two things. Firstly, SOMETHING is being subtracted from 78 which means answer would be less than 78. Secondly, we have to check WHETHER the term in the brackets is negative or POSITIVE. It would be negative if1.95 × 9.998 would be greater than 24.98 which is not true. Hence number would be less than 78 and only option 58 is less than 78. Option 1 is the right answer. Detailed solution: It can be approximated as 78 – [5 + 3 of (25 – 2 × 10)], Now using BODMAS rule Follow BODMAS rule to solve this question, as PER the order given below, Step-1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. ⇒ 78 – [5 + 3 of (25 – 20)], (Simplifying ‘multiplication’ 2 × 10 = 20) ⇒ 78 – [5 + 3 of 5], (Simplifying ‘subtraction’ 25 – 20 = 5) ⇒ 78 – [5 + 3 × 5], (Simplifying ‘of’) ⇒ 78 – [5 + 15], (Simplifying ‘multiplication’ 3 × 5 = 15) ⇒ 78 – 20, (Simplifying ‘addition’ 5 + 15 = 20) ⇒ 58, (Simplifying ‘subtraction’ 78 – 20 = 58) ∴ its approximated value is 58 |
|
| 210. |
1). 2002). 1003). 894). 95 |
| Answer» | |
| 211. |
Simplify \(\frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \left( {\frac{5}{6} \times \frac{{12}}{{15}} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of}}\frac{{13}}{7}\)1). 10/112). 12/113). 143/634). 3 2/9 |
|
Answer» The key is to use the BODMAS Sequence: Brackets Of Division Multiplication Addition Subtraction. Solving ACCORDINGLY, $(\begin{ARRAY}{l}\frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \DIV \left( {\frac{5}{6} \times \frac{{12}}{{15}} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of\;}}\frac{{13}}{7}\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \left( {\frac{2}{3} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of\;}}\frac{{13}}{7}\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \left( {\frac{{11}}{{13}} \times \frac{{13}}{7}} \right)\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \frac{{11}}{7}\\ = \frac{{\frac{{19}}{{12}}}}{{\frac{{19}}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \frac{{11}}{7}\\ = \frac{5}{{12}} \times \frac{{12}}{{11}} + \frac{5}{7} \times \frac{7}{{11}}\\ = \frac{5}{{11}} + \frac{5}{{11}}\END{array})$ = 10/11 |
|
| 212. |
Which of the following is the largest among √2, ∛3, √4, ∛5.1). √22). ∛33). √44). ∛5 |
|
Answer» FACTORS of √2 = 1.414 Factors of ?3 = 1.442 Factors of √4 = 2 Factors of ?5 = 1.709 So, LARGEST number is √4 |
|
| 213. |
1). \(\sqrt 5 \)2). \(\sqrt[3]{6}\)3). \(\sqrt[4]{7}\)4). \(\sqrt[6]{8}\) |
|
Answer» $(\sqrt 5= {5^{\frac{1}{2}}},\;\sqrt[3]{6} = {6^{\frac{1}{3}}},\;\sqrt[4]{7} = {7^{\frac{1}{4}}},\;\sqrt[6]{8} = {8^{\frac{1}{6}}})$ LCM of denominators of exponents = LCM (2, 3, 4, 6) = 12 $({5^{\frac{1}{2} \times \frac{{12}}{{12}}}},\;{6^{\frac{1}{3} \times \frac{{12}}{{12}}}},\;{7^{\frac{1}{4} \times \frac{{12}}{{12}}}},\;{8^{\frac{1}{6} \times \frac{{12}}{{12}}}} = {5^{\frac{6}{{12}}}},\;{6^{\frac{4}{{12}}}},\;{7^{\frac{3}{{12}}}},\;{8^{\frac{2}{{12}}}})$ 56 > 64 > 73 > 82 ∴ √5 is the greatest |
|
| 214. |
What is the value of (.4)2 + (.04)2 + (.004)2?1). 0.1616162). 0.01616063). 0.0016164). 0.000616 |
|
Answer» ⇒ (.4)2 + (.04)2 + (.004)2 = 0.16 + 0.0016 + 0.000016 = 0.161616 Hence, 0.161616 will be the ANSWER. |
|
| 215. |
Simplify:- \(\sqrt {0.0016} = ?\)1). 0.0042). 0.043). 0.44). None of these |
|
Answer» Given, Equation is, $(\BEGIN{array}{l} \SQRT {0.0016} = ?\\ \Rightarrow \sqrt {\FRAC{{16}}{{10000}}} = ?\\ \Rightarrow \frac{4}{{100}} = ? \end{array})$ ⇒ ? = 0.04 |
|
| 216. |
Which one is the largest fraction among 3/5, 6/7 and 5/11?1). 6/72). 3/53). 5/114). All are equal |
|
Answer» 3/5 = 0.6 6/7 = 0.85 5/11 = 0.45 We can OBSERVE that 0.85 is LARGEST AMONG all. ∴ 6/7 is largest FRACTION among 3/5, 6/7, 5/11. |
|
| 217. |
When simplified, the expression \({\left( {0.008} \right)^{\frac{1}{3}}} - {\left( {0.0016} \right)^{\frac{1}{4}}} \times {5^0}\; + \;{\left( {\frac{4}{7}} \right)^{ - 1}}\) is equal to1). 1.752). 0.853). 1.54). 0.65 |
|
Answer» $({\left( {0.008} \right)^{\FRAC{1}{3}}} - {\left( {0.0016} \right)^{\frac{1}{4}}} \TIMES {5^0}\; + \;{\left( {\frac{4}{7}} \right)^{ - 1}}\; = \;0.2 - 0.2\; + \;\frac{7}{4}\; = \;1.75)$ |
|
| 218. |
497.01 + 12.87 - 54.80 = ? % of 5001). 192). 813). 914). 34 |
|
Answer» ⇒ 497.01 + 12.87 - 54.80 = ? % of 500 We can write the GIVEN values as - ⇒ 497.01 ≈ 497 and 12.87 ≈ 13 and 54.80 ≈ 55 Then, the EXPRESSION becomes = ⇒ 497 + 13 - 55 = ? % of 500 ⇒ 497 + 13 - 55 = (?/100) × 500 ⇒ 497 + 13 - 55 = 5 × ? ⇒ 510 - 55 = 5 × ? ⇒ 455 = 5 × ? ⇒ ? = 455/5 ∴ ? ≈ 91 |
|
| 219. |
1124 + [24 + {23 – (27 + 6 × 9) + 91} + 66.67% of 75] = ?2 + 2701). 312). 323). 334). 21 |
|
Answer» Follow BODMAS rule to SOLVE this QUESTION, as per the order given below, Step–1: PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step–2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step–3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step–4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. 1124 + [24 + {23 – (27 + 6 × 9) + 91} + 66.67% of 75] = ?2 + 270 ⇒ 1124 + [24 + {23 – (27 + 54) + 91} + 2/3 × 75] = ?2 + 270 ⇒ 1124 + [24 + {23 – 81 + 91} + 2 × 25] = ?2 + 270 ⇒ 1124 + [24 + 33 + 50] = ?2 + 270 ⇒ 1124 + 107 = ?2 + 270 ⇒ ?2 = 1231 – 270 = 961 ∴ ? = 31 |
|
| 220. |
1). 1/552). 18/1003). 18/10004). 1/66 |
|
Answer» By looking at the options we can SAY that the options B & C can be RULED out as they result in a terminating NON - recurring decimal numbers i.e., 18/100 = 0.18 & 18/1000 = 0.018 So let us check the other options: $(\begin{array}{l} 1/55{\rm{\;}} = {\rm{\;}}0.0181818 \ldots .{\rm{\;}} = {\rm{\;}}0.0\overline {18} \\ \therefore {\rm{\;}}0.0\overline {18} \; = \;\frac{1}{{55}} \END{array})$ |
|
| 221. |
1). 4/272). 7/243). 5/284). 7/17 |
|
Answer» <P>⇒ LET the original fraction be p/q ⇒ Given, p × (300/q) × 250 = 3/14 ∴ p/q = 5/28 |
|
| 222. |
1). 1/22). 2/33). 3/44). 1/4 |
|
Answer» Given expression: $(\frac{{\frac{4}{{15}}}}{{\frac{2}{5}}} = ?)$ $(\Rightarrow ? = \frac{4}{{15}} \div \frac{2}{5} = \frac{4}{{15}} \TIMES \frac{5}{2} = \frac{2}{3})$ HENCE, the REQUIRED value in place of QUESTION mark is 2/3. |
|