InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
1). 02). 13). -14). 2 |
| Answer» | |
| 52. |
1). \(12\frac{{23}}{{42}}\)2). \(11\frac{{11}}{{42}}\)3). \(10\frac{{13}}{{42}}\)4). \(12\frac{{14}}{{42}}\) |
|
Answer» Now, $(14\frac{6}{7}+15\frac{2}{7} - 5\frac{2}{3}\times3\frac{1}{2}=?)$ $(\begin{array}{l} = \frac{{104}}{7} + \frac{{107}}{7} - \frac{{17}}{3} \TIMES \frac{7}{2}\\ = \frac{{211}}{7} - \frac{{119}}{6} \end{array})$ $(\begin{array}{l} = \frac{{1266\;-\;833}}{{42}}\\ = \frac{{433}}{{42}}\\ =\;?=10\frac{{13}}{{42}} \end{array})$ |
|
| 53. |
If 32x + 3x = 3x + 3, then values of x are 1). 1/22). -1/33). 2/34). 1/3 |
|
Answer» GIVEN expression, ⇒ 32x = 3 ⇒ 2x = 1 ⇒ x = 1/2 |
|
| 54. |
If R = 97 and S = 155.2, then S is how much percentage more than R?1). 602). 37.53). 58.24). 48 |
| Answer» | |
| 55. |
1). 82%2). 84%3). 85%4). 86% |
|
Answer» ⇒ a = 7b The percentage by which b is LESS than a = [(a – b)/a] × 100 = [(7b – b)/7b] × 100 = (6/7) × 100 ≈ 86% ∴ The percentage by which b is less than a = 86% |
|
| 56. |
73% of 650 – 111% of 240 =?1). 468.32). 420.83). 408.44). 460.4 |
|
Answer» GIVEN expression: 73% of 650 – 111% of 240 ⇒ [73% of 650] – [111% of 240] $(\RIGHTARROW \LEFT[ {\frac{{73}}{{100}} \TIMES 650\left] - \right[\frac{{111}}{{100}} \times 240} \right])$ ⇒ [73 × 6.5] – [111 × 2.4] ⇒ 474.5 – 266.4 = 208.1 |
|
| 57. |
Compute: (18 + 2 × 3.3) + 0.0031). 11.2002). 51.003). 24.6034). 16.103 |
|
Answer» = (18 + 6.6) + 0.003 = 24.6 + 0.003 = 24.603 |
|
| 58. |
Find the value of \(\sqrt {7 + \sqrt {7 + \sqrt {7 +\ldots } } }\)1). 2.64572). 3.10573). 3.17894). 3.1925 |
|
Answer» Let x = $(\sqrt {7 + \sqrt {7 + \sqrt {7 +\ldots } } })$ ⇒ $({\RM{x}} = \sqrt {7 + {\rm{x}}})$ ⇒ x2 = 7 + x ⇒ x2 – x – 7 = 0 Hence we get, $({\rm{x}} = \frac{{1 \PM \sqrt {1 + 28} }}{2} = \frac{{1 \pm 5.385}}{2} = 3.1925,{\rm{\;}} - 2.1925)$ Since, the GIVEN term is positive, ∴ the correct answer is 3.1925. |
|
| 59. |
[3357 ÷ 9 + {(34 × 4 – 67) ÷ 3 + 24}] – 27 = ? × 5 + 4 × 671). 202). 253). 284). 30 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step–1: PARTS of an equation enclosed in 'Brackets' must be SOLVED first, and in the bracket, Step–2: Any mathematical 'Of' or 'Exponent' must be solved next, Step–3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step–4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. [3357 ÷ 9 + {(34 × 4 – 67) ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67 ⇒ [3357 ÷ 9 + {69 ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67 ⇒ [3357 ÷ 9 + {69 ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67 ⇒ [373 + 47] – 27 = ? × 5 + 268 ⇒ 420 – 27 – 268 = ? × 5 ⇒ ? = 125/5 ∴ ? = 25 |
|
| 60. |
1). 12792). 10283). 18204). 1628 |
|
Answer» 1/6 of 7842 + 125% of X = 3342 ⇒ 1/6 × 7842 + 125/100 × x = 3342 ⇒ 1307 + 5/4 × x = 3342 ⇒ 5/4 × x = 3342 – 1307 ⇒ x = 2035 × 4/5 = 1628 ∴ ANSWER is x = 1628 |
|
| 61. |
(51.01 ÷ 16.84) + 20.90 = 35.85 – ?1). 202). 483). 124). 11 |
|
Answer» Given expression is, (51.01 ÷ 16.84) + 20.90 = 35.85 – ? We can write the given VALUES as: 51.01 ≈ 51 and 16.84 ≈ 17 20.90 ≈ 21 and 35.85 ≈ 36 Then, ⇒ (51 ÷ 17) + 21 = 36 – ? ⇒ 3 + 21 = 36 – ? ⇒ 24 = 36 – ? ⇒ ? = 36 – 24 ⇒ ? ≈ 12 |
|
| 62. |
4015 × 73 - 21817 = ? × 112 + 1261). 24272). 24183). 24234). 2421 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order GIVEN below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4-Last but not least, the parts of the equation that ?contain 'Addition' and 'Subtraction' should be calculated. 4015 × 73 - 21817 = ? × 112 + 126 ⇒ 293095 - 21817 = ? × 112 + 126 ⇒ 271278 = ? × 112 + 126 ⇒ ? × 112 = 271278 - 126 ⇒ ? = 271152/112 ∴ ? = 2421 |
|
| 64. |
A student multiplied a number by 11/13 instead of 13/11. What is the percentage error in the calculation?1). 39.67 percent2). 28.4 percent3). 14.2 percent4). 19.83 percent |
|
Answer» Wrong number = 11x/13 Actual number = 13x/11 ERROR = 13x/11 – 11x/13 = 48x/143 Percentage error = (48x/143)/(13x/11) × 100 = 28.4% |
|
| 65. |
Solve: \(\left( {\sqrt {9604} \div \sqrt {2401} } \right) \times \left( {\sqrt {2500} - \sqrt {64} } \right)\)1). 362). 843). 424). 48 |
|
Answer» ⇒ $(\left( {\sqrt {9604} \DIV \sqrt {2401} } \RIGHT) \times \left( {\sqrt {2500} - \sqrt {64} } \right))$ = $(\left( {98 \div 49} \right) \times \left( {50\; - 8} \right))$ = 2 × 42 = 84 |
|
| 66. |
1). 10.12). 15.13). 5.34). 20 |
|
Answer» In this type of question, we are expected to calculate Approximate VALUE (not exact value), so we can replace the given numbers by their nearest perfect places which makes the calculation easy. Let, 24.95 ≈ 25, 9.88 ≈ 10, 1010 ≈1000, 624 ≈625, 51 ≈ 50 and 499 ≈ 500 Now, given EXPRESSION: $(\Rightarrow {\left( {\FRAC{{25}}{{10}}} \right)^2} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}} = ?)$ $(\Rightarrow {\RM{\;}}? = {\left( {\frac{{25}}{{10}}} \right)^2} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}})$ $(\Rightarrow {\rm{\;}}? = \frac{{625}}{{100}} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}})$ ⇒ ? = 10 + 0.1 ⇒ ? = 10.1 Hence, the required answer is 10.1 |
|
| 67. |
1). 18972). 19563). 17854). 1654 |
|
Answer» 369.01 ÷ 9.03 + 123.98 ÷ 4.01 + 1460 × 1.25 = ? Approximating the value to the NEAREST integer: ⇒ 369 ÷ 9 + 124 ÷ 4 + 1460 × (5/4) = ? $( \Rightarrow \FRAC{{369}}{9} + \frac{{124}}{4} + 1460 \times \frac{5}{4} = {\rm{}}?)$ |
|
| 68. |
(349.96 × 9.98) ÷ 6.9901 + 1245.15 = ?1). 17662). 17453). 16764). 1876 |
|
Answer» Approximating the numbers in the above EXPRESSION: ⇒ 3500 ÷ 7 + 1245 = ? ⇒ 500 + 1245 = ? ∴ ? = 1745 |
|
| 69. |
The reciprocal of the sum of the reciprocals of 6/5 and 3/7 is ________1). 19/62). 35/573). 6/194). 57/35 |
|
Answer» SUM of RECIPROCALS of 6/5 and 3/7 = 5/6 + 7/3 = 5/6 + 14/6 = 19/6 Reciprocal of sum of reciprocals of 6/5 and 3/7 = 6/19 Hence, 6/19 is CORRECT ANSWER |
|
| 70. |
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:1). 22). 33). 44). 5 |
|
Answer» ⇒ z = 140/48 = 35/12 ⇒ 10(0.48z) = 10(2 x 0.70) = 101.40 ⇒ 0.48 z = 1.40 ⇒ z = 140/48 = 35/12 ⇒ z = 2.9 ∴ APPROXIMATE value of z is 3 |
|
| 71. |
Find the value of 335 × 335 – 165 × 165?1). 200002). 850003). 855004). 27500 |
|
Answer» ⇒ 3352 – 1652 ⇒ (335 + 165) (335 – 165) ⇒ 500 × 170 ⇒ 85000 |
|
| 72. |
15.8 × 3 + 8.1 - 21.5 = ? + 14.61). 19.42). 18.43). 20.14). 14.9 |
|
Answer» ⇒ 15.8 × 3 + 8.1 – 21.5 = ? + 14.6 ⇒ 47.4 + 8.1 – 21.5 = ? + 14.6 ⇒ ? + 14.6 = 34 ∴ ? = 19.4 |
|
| 73. |
If x = 1 + √6 + √7, then the value of \(\left( {x + \frac{1}{{x - 1}}} \right)\) is1). 1 + 2√72). 6 + √73). 1 + 2√64). 2√7 – 1 |
|
Answer» x = 1 + √6 + √7 $(\BEGIN{ARRAY}{l}x + \FRAC{1}{{x - 1}}\\ = \left( {1 + \sqrt 6+ \sqrt 7 } \right) + \frac{1}{{1 + \sqrt 6+ \sqrt 7- 1}}\\ = 1 + \sqrt 6+ \sqrt 7+ \frac{1}{{\sqrt 6+ \sqrt 7 }} \TIMES \frac{{\sqrt 6- \sqrt 7 }}{{\sqrt 6- \sqrt 7 }}\;\\ = 1 + \sqrt 6+ \sqrt 7+ \frac{{\left( {\sqrt 6- \sqrt 7 } \right)}}{{6 - 7}}\end{array})$ = 1 + √6 + √7 + √7 – √6 = 1 + 2√7 |
|
| 74. |
17.94% of 250 + √2810 - 23.87% of 350 = ?1). 142). 153). 134). 12 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 17.94% of 250 + √2810 - 23.87% of 350 = ? Taking the approximate values as, 17.94 ≈ 18, √2810 ≈ √2809, 23.87 ≈ 24 ⇒ 18% of 250 + √2809 - 24% of 350 = ? ⇒ 0.18 × 250 + 53 - 0.24 × 350 = ? ⇒ 45 + 53 - 84 = ? ∴ ? = 14 |
|
| 75. |
What is the value of \(\frac{{\sqrt[3]{{64}} \times \sqrt {121} }}{{\sqrt {289}- \sqrt {169} }}?\)1). 122). 113). 1/114). 1/12 |
|
Answer» $(\frac{{\SQRT[3]{{64}} \TIMES \sqrt {121} }}{{\sqrt {289}- \sqrt {169} }} = \frac{{\sqrt[3]{{4 \times 4 \times 4\;}} \times \sqrt {11 \times 11} }}{{\sqrt {17 \times 17}- \sqrt {13 \times 13} }} = \frac{{4\; \times \;11}}{{17 - \;13}} = \frac{{44}}{4} = 11\;)$ |
|
| 76. |
\(\sqrt {43 + \sqrt {32 + \sqrt {4 + \sqrt {130 + \sqrt {196} } } } }\) is equal to1). 72). 63). 84). 10 |
|
Answer» Let us solve each of the square roots INDIVIDUALLY: √196 = 14 14 + 130 = 144 √144 = 12 12 + 4 = 16 √16 = 4 4 + 32 = 36 √36 = 6 6 + 43 = 49 √49 = 7 |
|
| 77. |
1). 12752). 11803). 11854). 1075 |
|
Answer» Given EXPRESSION is, ⇒ 987 + 23% of 1500 = ? + 21% of 700 $(\Rightarrow 987 + \frac{{23}}{{100}} \TIMES 1500 = \;? + \frac{{21}}{{100}} \times 700)$ ⇒ 987 + 23 × 15 = ? + 21 × 7 ⇒ 987 + 345 = ? + 147 ⇒ 1332 = ? + 147 ⇒ ? = 1332 – 147 = 1185 ⇒ ? = 1185 |
|
| 78. |
1). 8822). 8803). 8844). 800 |
|
Answer» Follow BODMAS rule to solve this question, as per the order is GIVEN below, STEP - 1 - Parts of an equation enclosed in 'Brackets' MUST be solved first, Step - 2 - Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated, Step - 4 - Last but not least, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated. {(32 ÷ 2 + 16 – 4 × 152 ÷ 2) + 342} ⇒ {(16 + 16 – 4 × 76) + 1156} ⇒ {(16 + 16 – 304) + 1156} ⇒ {(32 – 304) + 1156} ⇒ {(-272) + 1156} ∴ 884 |
|
| 79. |
1). 32). 13). 154). 10 |
|
Answer» 250% of 30 ÷ 300% of 25 = ?% of 100 $(\eqalign{ & Or,\ \ 30 \times \frac{{250}}{{100}} \DIV 25 \times \frac{{300}}{{100}} = 100 \times \frac{?}{{100}} \CR & Or,\ \ 75 \div 75 =\ ? \cr & Or,\ \ ? = 1 \cr})$ |
|
| 80. |
(1/64)0 + (-32)4/5 + (64)-1/2 + (32)2/5 = ?1). 142/72). 161/83). 169/74). 169/8 |
|
Answer» Follow these BODMAS rules to solve the question Step-1? The part of the equation containing 'Brackets' must be solved first, and in the bracket, Step-2? Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4? At last, the part of the equation that CONTAINS 'Addition' and 'Subtraction' should be solved. ⇒ (1/64)0 + (-32)4/5 + (64)-1/2 + (32)2/5 = ? Anything RAISE to POWER 0 is 1, ∴ (1/64)0 is = 1 ⇒ ? = 1 + (-25 × 4/5) + (1/8) + (25 × 2/5) ⇒ ? = 1 + 16 + 1/8 + 4 ⇒ ? = 21 + 1/8 ⇒ ? = 169/8 |
|
| 81. |
(52.022 – 34.012) ÷ 17.99 × √? = 17201). 4002). 203). 254). 625 |
|
Answer» Approximating the NUMBERS in the above EXPRESSION: ⇒ (522 – 342) ÷18 × √? = 1720 ⇒ (52 + 34) × (52 – 34)18 × √? = 1720 ⇒ (86 × 18) ÷ 18 × √? = 1720 ⇒ 86 × √? = 1720 ⇒ √? = 1720/86 = 20 ∴ ? = 202 = 400 |
|
| 82. |
Simplify:- 40% of ? = 9601). 22002). 26003). 29604). 2400 |
|
Answer» Let the MISSING value be ‘x’. According to QUESTION: ⇒ 40% of x = 960 ⇒ 40/100 × x = 960 ⇒ x = 960 × 100/40 ⇒ x = 96 × 25 = 2400 |
|
| 83. |
1). 88.252). 58.53). 85.754). 90.5 |
|
Answer» GIVEN expression: $(\FRAC{1}{8}of\frac{2}{3}\;of\frac{3}{5}\;of\;1715 = ?)$ ⇒ ? = (1/8) × (2/3) × (3/5) × 1715 ⇒ ? = (1/20) × 1715 ⇒ ? = 85.75 Hence, the REQUIRED number in place of question MARK is 85.75. |
|
| 84. |
1). \(\frac{1}{{b - 4}}\)2). \(\frac{{b - 8}}{{b - 4}}\)3). \(\frac{{b - 4}}{{b - 7}}\)4). \(\frac{1}{{b - 8}}\) |
|
Answer» $(\left( {1 - \frac{1}{{b - 4}}} \RIGHT)\left( {1 - \frac{1}{{b - 5}}} \right)\left( {1 - \frac{1}{{b - 6}}} \right)\left( {1 - \frac{1}{{b - 7}}} \right) = \frac{{b - 5}}{{b - 4}} \times \frac{{b - 6}}{{b - 5}} \times \frac{{b - 7}}{{b - 6}} \times \frac{{b - 8}}{{b - 7}} = \frac{{b - 8}}{{b - 4}})$ |
|
| 85. |
(0.3 × 0.025) + (0.12 × 2.5) – (0.4 × 1.05) = ?1). -0.0452). -0.11253). 0.11254). 0.7275 |
|
Answer» (0.3 × 0.025) + (0.12 × 2.5) – (0.4 × 1.05) = ? ⇒ 0.0075 + 0.3 - 0.42 = ? ⇒ 0.3075 - 0.42 = ? ∴ ? = -0.1125 |
|
| 86. |
2301 ÷ 20.01 × 34.99 + 600.01 = ?1). 46452). 46103). 46654). 4625 |
|
Answer» Follow BODMAS to solve this question, as per the order GIVEN below, Step-1: Parts of an equation enclosed in ‘Brackets’ must be solved first, Step-2: Any mathematical ‘Of’ or ‘Exponent’ must be solved next, Step-3: Next, the parts of the equation that contains ‘Division’ and ‘MULTIPLICATION’ are calculated, Step-4: LAST but not the least, the parts of the equation that contains ‘Addition’ and Subtraction’ should be calculated. Given expression,? 2301 ÷ 20.01 × 34.99 + 600.01 = ? ⇒ ? ≈ 2301 ÷ 20 × 35 + 600 ⇒ ? ≈ 115 × 35 + 600 ⇒ ? ≈ 4625 |
|
| 88. |
What is the value of 88% of 1125 + 20% of 425?1). 10252). 1125.23). 10754). 1055 |
|
Answer» ⇒ x = 88% of 1125 + 20% of 425 ⇒ x = 1125 × 88/100 + 425 × 20/100 ∴ x = 990 + 85 = 1075 |
|
| 89. |
Simplify: (0.0081)0.14 × (0.0081)0.111). 0.32). 33). 0.94). 0.09 |
|
Answer» (0.081)0.14 × (0.081)0.11 = (0.0081)0.14 + 0.11 = (81 × 10-4)0.25 = (34 × 10-4)25/100 = (34 × 10-4)1/4 = 3 × 10-1 = 0.3 |
|
| 90. |
1). 68/372). 683). 6/374). 6 |
|
Answer» $(\BEGIN{array}{L} \left( {7\frac{3}{5}-3\frac{1}{{15}}} \right) \div 2\frac{7}{{15}} = \left( ? \right)\\ \RIGHTARROW \left( {\frac{{38}}{5}-\frac{{46}}{{15}}} \right) \div \frac{{37}}{{15}} = ? \end{array})$ ⇒ ? = (114 – 46)/15 ÷ 37/15 ⇒ ? = 68/15 ÷ 37/15 ⇒ ? = 68/15 × 15/37 ∴ ? = 68/37 |
|
| 91. |
1). 925.5542). 930.9953). 920.3504). 922.577 |
|
Answer» ⇒ 77.07 + 777.77 + 7.077 + 70.707 – 7.07 = ? ⇒ 854.84 + 77.784 – 7.07 = ? ⇒ ? = 932.624 - 7.07 ∴ ? = 925.554 |
|
| 92. |
1). 162). 363). 644). 21 |
|
Answer» $({\left( { - 7776} \right)^{\FRAC{2}{5}}} = {\left[ {\left( { - {2^5}) \times ( - {3^5}} \right)} \right]^{\frac{2}{5}}})$ $( \Rightarrow {\left( { - 2} \right)^{5 \times \frac{2}{5}}} \times {\left( { - 3} \right)^{5\; \times \;\frac{2}{5}}})$ $( \Rightarrow {\left( { - 2} \right)^{2\;}} \times {\left( { - 3} \right)^{2\;}} = 4 \times 9 = 36)$ |
|
| 93. |
What is the value of \(\sqrt[3]{{729}} \times \sqrt {16}+ \sqrt {676}+ \sqrt {169} ?\)1). 752). 643). 354). 60 |
|
Answer» $(\SQRT[3]{{729}} \TIMES \sqrt {16}+ \sqrt {676}+ \sqrt {169})$ ⇒ 9 × 4 + 26 + 13 ⇒ 36 + 26 + 13 ⇒ 75 |
|
| 94. |
?2 + √1024 = 5611). 282). 233). 244). 22 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation ENCLOSED in the ‘BRACKETS’ must be solved first Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next Step-3: Next the PART of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step-4: Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ ?2 + √1024 = 561 ⇒ ?2 + 32 = 561 ⇒ ?2 = 561 – 32 ⇒ ?2 = 529 ⇒ ?2 = (23)2 ⇒ ? = 23 |
|
| 95. |
What is the difference between 0.6 and 0.6%?1). 5.942). 0.5943). 604). 54 |
|
Answer» 0.6% = 0.6/100 = 0.006 The DIFFERENCE between 0.6 and 0.6% = 0.6 – 0.006 = 0.594 |
|
| 96. |
1). 22). 43). 124). 11 |
|
Answer» We can WRITE following values as : 84.90 ≈ 85, 110.40 ≈ 110 and 70.30 ≈ 70 337.40 ≈ 337 and 52.75 ≈ 53 Given EXPRESSION is, ⇒ 84.90 + 110.40 – 70.30 = 337.40 – 52.75 × ? ⇒ 85 + 110 – 70 = 337 – 53 × ? ⇒ 195 – 70 = 337 – 53 × ? ⇒ 125 = 337 – 53 × ? ⇒ 337 – 125 = 53 × ? ⇒ 212 = 53 × ? ⇒ ? = 212/53 ⇒ ? ≈ 4 |
|
| 97. |
1). 882). 823). 894). 97 |
|
Answer» 31.992 × 28.196/6.932 + 677.993 – 320.898 = ? × 4.889 Taking their APPROX. values ⇒ 32 × 28/7 + 678 – 321 = ? × 5 ⇒ 32 × 4 + 678 – 321 = ? × 5 ⇒ ? × 5 = 128 + 678 – 321 ⇒ ? = 485/5 ⇒ ? = 97 |
|
| 98. |
Simplify the expression {[√(x-3/5)]-5/3}5.1). x -5/32). x5/23). x 3/54). x 5/3 |
|
Answer» GIVEN that, {[√(X-3/5)]-5/3}5 ⇒ (x-3/5)1/2 × (-5/3) × 5 ⇒ (x-3/5)-25/6 ⇒ (x)-25/6 ×-3/5 = x5/2 ∴ The REQUIRED ANSWER is x5/2 |
|
| 99. |
4/7 of the birthday cake was eaten on your birthday. The next day your dad ate 1/2 of what was left. You want to finish the cake. How much is left?1). 1/42). 3/23). 3/44). 3/14 |
|
Answer» Given, 4/7 of the birthday CAKE was eaten on your birthday Fraction of cake LEFT = 1 – 4/7 = 3/7 Now, next day your dad ate 1/2 of what was left $({\rm{Fraction\;of\;cake\;left}} = \frac{3}{7} - \frac{1}{2} \times \frac{3}{7} = \frac{3}{{14}})$ |
|
| 100. |
If 51.97 - (81.18 - x) - 59.39 = 5.628, then value of x will be?1). -24.9122). -68.4923). 94.2284). 197.808 |
|
Answer» 51.97 - (81.18 - X) - 59.39 = 5.628 ⇒ 51.97 - 81.18 + x - 59.39 = 5.628 ⇒ x - 29.21 - 59.39 = 5.628 ⇒ x = 5.628 + 29.21 + 59.39 ∴ The VALUE of x = 94.228 |
|