Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

1). 02). 13). -14). 2

Answer»
52.

1). \(12\frac{{23}}{{42}}\)2). \(11\frac{{11}}{{42}}\)3). \(10\frac{{13}}{{42}}\)4). \(12\frac{{14}}{{42}}\)

Answer»

Now, $(14\frac{6}{7}+15\frac{2}{7} - 5\frac{2}{3}\times3\frac{1}{2}=?)$

$(\begin{array}{l} = \frac{{104}}{7} + \frac{{107}}{7} - \frac{{17}}{3} \TIMES \frac{7}{2}\\ = \frac{{211}}{7} - \frac{{119}}{6} \end{array})$

$(\begin{array}{l} = \frac{{1266\;-\;833}}{{42}}\\ = \frac{{433}}{{42}}\\ =\;?=10\frac{{13}}{{42}} \end{array})$

53.

If 32x + 3x = 3x + 3, then values of x are 1). 1/22). -1/33). 2/34). 1/3

Answer»

GIVEN expression,

⇒ 32X + 3X = 3x + 3

⇒ 32x = 3

⇒ 2x = 1

⇒ x = 1/2
54.

If R = 97 and S = 155.2, then S is how much percentage more than R?1). 602). 37.53). 58.24). 48

Answer»

REQUIRED % = {(155.2 – 97)/ 97} × 100 = 60%

55.

1). 82%2). 84%3). 85%4). 86%

Answer»

a is 7 TIMES longer than B.

⇒ a = 7b

The percentage by which b is LESS than a = [(a – b)/a] × 100 = [(7b – b)/7b] × 100 = (6/7) × 100 ≈ 86%

∴ The percentage by which b is less than a = 86%

56.

73% of 650 – 111% of 240 =?1). 468.32). 420.83). 408.44). 460.4

Answer»

GIVEN expression:

73% of 650 – 111% of 240

⇒ [73% of 650] – [111% of 240]

$(\RIGHTARROW \LEFT[ {\frac{{73}}{{100}} \TIMES 650\left] - \right[\frac{{111}}{{100}} \times 240} \right])$

⇒ [73 × 6.5] – [111 × 2.4]

⇒ 474.5 – 266.4 = 208.1

57.

Compute: (18 + 2 × 3.3) + 0.0031). 11.2002). 51.003). 24.6034). 16.103

Answer»

(18 + 2 × 3.3) + 0.003

= (18 + 6.6) + 0.003

= 24.6 + 0.003

= 24.603
58.

Find the value of \(\sqrt {7 + \sqrt {7 + \sqrt {7 +\ldots } } }\)1). 2.64572). 3.10573). 3.17894). 3.1925

Answer»

Let x = $(\sqrt {7 + \sqrt {7 + \sqrt {7 +\ldots } } })$

⇒ $({\RM{x}} = \sqrt {7 + {\rm{x}}})$

⇒ x2 = 7 + x

⇒ x2 – x – 7 = 0

Hence we get,

$({\rm{x}} = \frac{{1 \PM \sqrt {1 + 28} }}{2} = \frac{{1 \pm 5.385}}{2} = 3.1925,{\rm{\;}} - 2.1925)$

Since, the GIVEN term is positive,

∴ the correct answer is 3.1925.
59.

[3357 ÷ 9 + {(34 × 4 – 67) ÷ 3 + 24}] – 27 = ? × 5 + 4 × 671). 202). 253). 284). 30

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step–1: PARTS of an equation enclosed in 'Brackets' must be SOLVED first, and in the bracket,

Step–2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step–3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step–4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

[3357 ÷ 9 + {(34 × 4 – 67) ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67

⇒ [3357 ÷ 9 + {69 ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67

⇒ [3357 ÷ 9 + {69 ÷ 3 + 24}] – 27 = ? × 5 + 4 × 67

⇒ [373 + 47] – 27 = ? × 5 + 268

⇒ 420 – 27 – 268 = ? × 5

⇒ ? = 125/5

∴ ? = 25
60.

1). 12792). 10283). 18204). 1628

Answer»

1/6 of 7842 + 125% of X = 3342

⇒ 1/6 × 7842 + 125/100 × x = 3342

⇒ 1307 + 5/4 × x = 3342

⇒ 5/4 × x = 3342 – 1307

⇒ x = 2035 × 4/5 = 1628

ANSWER is x = 1628
61.

(51.01 ÷ 16.84) + 20.90 = 35.85 – ?1). 202). 483). 124). 11

Answer»

Given expression is,

(51.01 ÷ 16.84) + 20.90 = 35.85 – ?

We can write the given VALUES as:

51.01 ≈ 51 and 16.84 ≈ 17

20.90 ≈ 21 and 35.85 ≈ 36

Then,

⇒ (51 ÷ 17) + 21 = 36 – ?

3 + 21 = 36 – ?

⇒ 24 = 36 – ?

⇒ ? = 36 – 24

⇒ ? ≈ 12
62.

4015 × 73 - 21817 = ? × 112 + 1261). 24272). 24183). 24234). 2421

Answer»

Follow BODMAS RULE to solve this question, as per the order GIVEN below,

Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED,

Step-4-Last but not least, the parts of the equation that ?contain 'Addition' and 'Subtraction' should be calculated.

4015 × 73 - 21817 = ? × 112 + 126

⇒ 293095 - 21817 = ? × 112 + 126

⇒ 271278 = ? × 112 + 126

⇒ ? × 112 = 271278 - 126

⇒ ? = 271152/112

∴ ? = 2421
63.

1). 2662). 2643). 2964). 294

Answer»

$(\SQRT {69696} = 264)$

64.

A student multiplied a number by 11/13 instead of 13/11. What is the percentage error in the calculation?1). 39.67 percent2). 28.4 percent3). 14.2 percent4). 19.83 percent

Answer»

LET the NUMBER be x

Wrong number = 11x/13

Actual number = 13x/11

ERROR = 13x/11 – 11x/13 = 48x/143

Percentage error = (48x/143)/(13x/11) × 100 = 28.4%
65.

Solve: \(\left( {\sqrt {9604} \div \sqrt {2401} } \right) \times \left( {\sqrt {2500} - \sqrt {64} } \right)\)1). 362). 843). 424). 48

Answer»

⇒ $(\left( {\sqrt {9604} \DIV \sqrt {2401} } \RIGHT) \times \left( {\sqrt {2500} - \sqrt {64} } \right))$ = $(\left( {98 \div 49} \right) \times \left( {50\; - 8} \right))$ = 2 × 42 = 84

66.

1). 10.12). 15.13). 5.34). 20

Answer»

In this type of question, we are expected to calculate Approximate VALUE (not exact value), so we can replace the given numbers by their nearest perfect places which makes the calculation easy.

Let, 24.95 ≈ 25, 9.88 ≈ 10, 1010 ≈1000, 624 ≈625, 51 ≈ 50 and 499 ≈ 500

Now, given EXPRESSION:

$(\Rightarrow {\left( {\FRAC{{25}}{{10}}} \right)^2} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}} = ?)$

$(\Rightarrow {\RM{\;}}? = {\left( {\frac{{25}}{{10}}} \right)^2} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}})$

$(\Rightarrow {\rm{\;}}? = \frac{{625}}{{100}} \times \frac{{1000}}{{625}} + \frac{{50}}{{500}})$

⇒ ? = 10 + 0.1

⇒ ? = 10.1

Hence, the required answer is 10.1
67.

1). 18972). 19563). 17854). 1654

Answer»

369.01 ÷ 9.03 + 123.98 ÷ 4.01 + 1460 × 1.25 = ?

Approximating the value to the NEAREST integer:

⇒ 369 ÷ 9 + 124 ÷ 4 + 1460 × (5/4) = ?

$( \Rightarrow \FRAC{{369}}{9} + \frac{{124}}{4} + 1460 \times \frac{5}{4} = {\rm{}}?)$

⇒ 41 + 31 + 1825 = 1897

68.

(349.96 × 9.98) ÷ 6.9901 + 1245.15 = ?1). 17662). 17453). 16764). 1876

Answer»

Approximating the numbers in the above EXPRESSION:

⇒ (350 × 10) ÷ 7 + 1245 = ?

3500 ÷ 7 + 1245 = ?

⇒ 500 + 1245 = ?

∴ ? = 1745
69.

The reciprocal of the sum of the reciprocals of 6/5 and 3/7 is ________1). 19/62). 35/573). 6/194). 57/35

Answer»

SUM of RECIPROCALS of 6/5 and 3/7 = 5/6 + 7/3 = 5/6 + 14/6 = 19/6

Reciprocal of sum of reciprocals of 6/5 and 3/7 = 6/19

Hence, 6/19 is CORRECT ANSWER
70.

Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:1). 22). 33). 44). 5

Answer»

XZ = y2

⇒ z = 140/48 = 35/12

⇒ 10(0.48z) = 10(2 x 0.70) = 101.40

⇒ 0.48 z = 1.40

⇒ z = 140/48 = 35/12

⇒ z = 2.9

APPROXIMATE value of z is 3
71.

Find the value of 335 × 335 – 165 × 165?1). 200002). 850003). 855004). 27500

Answer»

335 × 335 – 165 × 165

⇒ 3352 – 1652

⇒ (335 + 165) (335 – 165)

500 × 170

⇒ 85000
72.

15.8 × 3 + 8.1 - 21.5 = ? + 14.61). 19.42). 18.43). 20.14). 14.9

Answer»

⇒ 15.8 × 3 + 8.1 – 21.5 = ? + 14.6

⇒ 47.4 + 8.1 – 21.5 = ? + 14.6

⇒ ? + 14.6 = 34

∴ ? = 19.4
73.

If x = 1 + √6 + √7, then the value of \(\left( {x + \frac{1}{{x - 1}}} \right)\) is1). 1 + 2√72). 6 + √73). 1 + 2√64). 2√7 – 1

Answer»

x = 1 + √6 + √7

$(\BEGIN{ARRAY}{l}x + \FRAC{1}{{x - 1}}\\ = \left( {1 + \sqrt 6+ \sqrt 7 } \right) + \frac{1}{{1 + \sqrt 6+ \sqrt 7- 1}}\\ = 1 + \sqrt 6+ \sqrt 7+ \frac{1}{{\sqrt 6+ \sqrt 7 }} \TIMES \frac{{\sqrt 6- \sqrt 7 }}{{\sqrt 6- \sqrt 7 }}\;\\ = 1 + \sqrt 6+ \sqrt 7+ \frac{{\left( {\sqrt 6- \sqrt 7 } \right)}}{{6 - 7}}\end{array})$

= 1 + √6 + √7 + √7 – √6

= 1 + 2√7
74.

17.94% of 250 + √2810 - 23.87% of 350 = ?1). 142). 153). 134). 12

Answer»

Follow BODMAS rule to solve this question, as PER the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED,

Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

17.94% of 250 + √2810 - 23.87% of 350 = ?

Taking the approximate values as,

17.94 ≈ 18, √2810 ≈ √2809, 23.87 ≈ 24

⇒ 18% of 250 + √2809 - 24% of 350 = ?

⇒ 0.18 × 250 + 53 - 0.24 × 350 = ?

45 + 53 - 84 = ?

∴ ? = 14
75.

What is the value of \(\frac{{\sqrt[3]{{64}} \times \sqrt {121} }}{{\sqrt {289}- \sqrt {169} }}?\)1). 122). 113). 1/114). 1/12

Answer»

$(\frac{{\SQRT[3]{{64}} \TIMES \sqrt {121} }}{{\sqrt {289}- \sqrt {169} }} = \frac{{\sqrt[3]{{4 \times 4 \times 4\;}} \times \sqrt {11 \times 11} }}{{\sqrt {17 \times 17}- \sqrt {13 \times 13} }} = \frac{{4\; \times \;11}}{{17 - \;13}} = \frac{{44}}{4} = 11\;)$

76.

\(\sqrt {43 + \sqrt {32 + \sqrt {4 + \sqrt {130 + \sqrt {196} } } } }\) is equal to1). 72). 63). 84). 10

Answer»

Let us solve each of the square roots INDIVIDUALLY:

√196 = 14

14 + 130 = 144

√144 = 12

12 + 4 = 16

√16 = 4

4 + 32 = 36

√36 = 6

6 + 43 = 49

√49 = 7
77.

1). 12752). 11803). 11854). 1075

Answer»

Given EXPRESSION is,

⇒ 987 + 23% of 1500 = ? + 21% of 700

$(\Rightarrow 987 + \frac{{23}}{{100}} \TIMES 1500 = \;? + \frac{{21}}{{100}} \times 700)$

⇒ 987 + 23 × 15 = ? + 21 × 7

⇒ 987 + 345 = ? + 147

⇒ 1332 = ? + 147

⇒ ? = 1332 – 147 = 1185

⇒ ? = 1185

78.

1). 8822). 8803). 8844). 800

Answer»

Follow BODMAS rule to solve this question, as per the order is GIVEN below,

STEP - 1 - Parts of an equation enclosed in 'Brackets' MUST be solved first,

Step - 2 - Any MATHEMATICAL 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated,

Step - 4 - Last but not least, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated.

{(32 ÷ 2 + 16 – 4 × 152 ÷ 2) + 342}

⇒ {(16 + 16 – 4 × 76) + 1156}

⇒ {(16 + 16 – 304) + 1156}

⇒ {(32 – 304) + 1156}

⇒ {(-272) + 1156}

∴ 884

79.

1). 32). 13). 154). 10

Answer»

250% of 30 ÷ 300% of 25 = ?% of 100

$(\eqalign{ & Or,\ \ 30 \times \frac{{250}}{{100}} \DIV 25 \times \frac{{300}}{{100}} = 100 \times \frac{?}{{100}} \CR & Or,\ \ 75 \div 75 =\ ? \cr & Or,\ \ ? = 1 \cr})$

80.

(1/64)0 + (-32)4/5 + (64)-1/2 + (32)2/5 = ?1). 142/72). 161/83). 169/74). 169/8

Answer»

Follow these BODMAS rules to solve the question

Step-1? The part of the equation containing 'Brackets' must be solved first, and in the bracket,

Step-2? Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved

Step-4? At last, the part of the equation that CONTAINS 'Addition' and 'Subtraction' should be solved.

⇒ (1/64)0 + (-32)4/5 + (64)-1/2 + (32)2/5 = ?

Anything RAISE to POWER 0 is 1, ∴ (1/64)0 is = 1

⇒ ? = 1 + (-25 × 4/5) + (1/8) + (25 × 2/5)

⇒ ? = 1 + 16 + 1/8 + 4

⇒ ? = 21 + 1/8

⇒ ? = 169/8
81.

(52.022 – 34.012) ÷ 17.99 × √? = 17201). 4002). 203). 254). 625

Answer»

Approximating the NUMBERS in the above EXPRESSION:

⇒ (522 – 342) ÷18 × √? = 1720

⇒ (52 + 34) × (52 – 34)18 × √? = 1720

⇒ (86 × 18) ÷ 18 × √? = 1720

⇒ 86 × √? = 1720

⇒ √? = 1720/86 = 20

∴ ? = 202 = 400
82.

Simplify:- 40% of ? = 9601). 22002). 26003). 29604). 2400

Answer»

Let the MISSING value be ‘x’. According to QUESTION:

⇒ 40% of x = 960

⇒ 40/100 × x = 960

⇒ x = 960 × 100/40

⇒ x = 96 × 25 = 2400
83.

1). 88.252). 58.53). 85.754). 90.5

Answer»

GIVEN expression:

$(\FRAC{1}{8}of\frac{2}{3}\;of\frac{3}{5}\;of\;1715 = ?)$

⇒ ? = (1/8) × (2/3) × (3/5) × 1715

⇒ ? = (1/20) × 1715

⇒ ? = 85.75

Hence, the REQUIRED number in place of question MARK is 85.75.
84.

1). \(\frac{1}{{b - 4}}\)2). \(\frac{{b - 8}}{{b - 4}}\)3). \(\frac{{b - 4}}{{b - 7}}\)4). \(\frac{1}{{b - 8}}\)

Answer»

$(\left( {1 - \frac{1}{{b - 4}}} \RIGHT)\left( {1 - \frac{1}{{b - 5}}} \right)\left( {1 - \frac{1}{{b - 6}}} \right)\left( {1 - \frac{1}{{b - 7}}} \right) = \frac{{b - 5}}{{b - 4}} \times \frac{{b - 6}}{{b - 5}} \times \frac{{b - 7}}{{b - 6}} \times \frac{{b - 8}}{{b - 7}} = \frac{{b - 8}}{{b - 4}})$

85.

(0.3 × 0.025) + (0.12 × 2.5) – (0.4 × 1.05) = ?1). -0.0452). -0.11253). 0.11254). 0.7275

Answer»

(0.3 × 0.025) + (0.12 × 2.5) – (0.4 × 1.05) = ?

⇒ 0.0075 + 0.3 - 0.42 = ?

⇒ 0.3075 - 0.42 = ?

∴ ? = -0.1125

86.

2301 ÷ 20.01 × 34.99 + 600.01 = ?1). 46452). 46103). 46654). 4625

Answer»

Follow BODMAS to solve this question, as per the order GIVEN below,

Step-1: Parts of an equation enclosed in ‘Brackets’ must be solved first,

Step-2: Any mathematical ‘Of’ or ‘Exponent’ must be solved next,

Step-3: Next, the parts of the equation that contains ‘Division’ and ‘MULTIPLICATION’ are calculated,

Step-4: LAST but not the least, the parts of the equation that contains ‘Addition’ and Subtraction’ should be calculated.

Given expression,?

2301 ÷ 20.01 × 34.99 + 600.01 = ?

⇒ ? ≈ 2301 ÷ 20 × 35 + 600

⇒ ? ≈ 115 × 35 + 600

⇒ ? ≈ 4625

87.

1). 92). 43). 54). 7

Answer»

243 = 3X

⇒ 3 × 3 × 3 × 3 × 3 = 3x

⇒ 35 = 3x

⇒ x = 5
88.

What is the value of 88% of 1125 + 20% of 425?1). 10252). 1125.23). 10754). 1055

Answer»

LET the VALUE be X

⇒ x = 88% of 1125 + 20% of 425

⇒ x = 1125 × 88/100 + 425 × 20/100

∴ x = 990 + 85 = 1075
89.

Simplify: (0.0081)0.14 × (0.0081)0.111). 0.32). 33). 0.94). 0.09

Answer»

(0.081)0.14 × (0.081)0.11 = (0.0081)0.14 + 0.11 = (81 × 10-4)0.25 = (34 × 10-4)25/100 = (34 × 10-4)1/4 = 3 × 10-1 = 0.3

90.

1). 68/372). 683). 6/374). 6

Answer»

$(\BEGIN{array}{L} \left( {7\frac{3}{5}-3\frac{1}{{15}}} \right) \div 2\frac{7}{{15}} = \left( ? \right)\\ \RIGHTARROW \left( {\frac{{38}}{5}-\frac{{46}}{{15}}} \right) \div \frac{{37}}{{15}} = ? \end{array})$

⇒ ? = (114 – 46)/15 ÷ 37/15

⇒ ? = 68/15 ÷ 37/15

⇒ ? = 68/15 × 15/37

∴ ? = 68/37

91.

1). 925.5542). 930.9953). 920.3504). 922.577

Answer»

⇒ 77.07 + 777.77 + 7.077 + 70.707 – 7.07 = ?

⇒ 854.84 + 77.784 – 7.07 = ?

⇒ ? = 932.624 - 7.07

∴ ? = 925.554

92.

1). 162). 363). 644). 21

Answer»

$({\left( { - 7776} \right)^{\FRAC{2}{5}}} = {\left[ {\left( { - {2^5}) \times ( - {3^5}} \right)} \right]^{\frac{2}{5}}})$

$( \Rightarrow {\left( { - 2} \right)^{5 \times \frac{2}{5}}} \times {\left( { - 3} \right)^{5\; \times \;\frac{2}{5}}})$

$( \Rightarrow {\left( { - 2} \right)^{2\;}} \times {\left( { - 3} \right)^{2\;}} = 4 \times 9 = 36)$

93.

What is the value of \(\sqrt[3]{{729}} \times \sqrt {16}+ \sqrt {676}+ \sqrt {169} ?\)1). 752). 643). 354). 60

Answer»

$(\SQRT[3]{{729}} \TIMES \sqrt {16}+ \sqrt {676}+ \sqrt {169})$

⇒ 9 × 4 + 26 + 13

36 + 26 + 13

⇒ 75

94.

?2 + √1024 = 5611). 282). 233). 244). 22

Answer»

FOLLOW BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation ENCLOSED in the ‘BRACKETS’ must be solved first

Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next

Step-3: Next the PART of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step-4: Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ ?2 + √1024 = 561

⇒ ?2 + 32 = 561

⇒ ?2 = 561 – 32

⇒ ?2 = 529

⇒ ?2 = (23)2

⇒ ? = 23
95.

What is the difference between 0.6 and 0.6%?1). 5.942). 0.5943). 604). 54

Answer»

0.6% = 0.6/100 = 0.006

The DIFFERENCE between 0.6 and 0.6% = 0.6 – 0.006 = 0.594
96.

1). 22). 43). 124). 11

Answer»

We can WRITE following values as :

84.90 ≈ 85, 110.40 ≈ 110 and 70.30 ≈ 70

337.40 ≈ 337 and 52.75 ≈ 53

Given EXPRESSION is,

⇒ 84.90 + 110.40 – 70.30 = 337.40 – 52.75 × ?

⇒ 85 + 110 – 70 = 337 – 53 × ?

⇒ 195 – 70 = 337 – 53 × ?

⇒ 125 = 337 – 53 × ?

⇒ 337 – 125 = 53 × ?

⇒ 212 = 53 × ?

⇒ ? = 212/53

⇒ ? ≈ 4
97.

1). 882). 823). 894). 97

Answer»

31.992 × 28.196/6.932 + 677.993 – 320.898 = ? × 4.889

Taking their APPROX. values

32 × 28/7 + 678 – 321 = ? × 5

⇒ 32 × 4 + 678 – 321 = ? × 5

⇒ ? × 5 = 128 + 678 – 321

⇒ ? = 485/5

⇒ ? = 97

98.

Simplify the expression {[√(x-3/5)]-5/3}5.1). x -5/32). x5/23). x 3/54). x 5/3

Answer»

GIVEN that,

{[√(X-3/5)]-5/3}5

⇒ (x-3/5)1/2 × (-5/3) × 5

⇒ (x-3/5)-25/6

⇒ (x)-25/6 ×-3/5 = x5/2

∴ The REQUIRED ANSWER is x5/2
99.

4/7 of the birthday cake was eaten on your birthday. The next day your dad ate 1/2 of what was left. You want to finish the cake. How much is left?1). 1/42). 3/23). 3/44). 3/14

Answer»

Given, 4/7 of the birthday CAKE was eaten on your birthday

Fraction of cake LEFT = 1 – 4/7 = 3/7

Now, next day your dad ate 1/2 of what was left

$({\rm{Fraction\;of\;cake\;left}} = \frac{3}{7} - \frac{1}{2} \times \frac{3}{7} = \frac{3}{{14}})$

100.

If 51.97 - (81.18 - x) - 59.39 = 5.628, then value of x will be?1). -24.9122). -68.4923). 94.2284). 197.808

Answer»

51.97 - (81.18 - X) - 59.39 = 5.628

⇒ 51.97 - 81.18 + x - 59.39 = 5.628

⇒ x - 29.21 - 59.39 = 5.628

⇒ x = 5.628 + 29.21 + 59.39

∴ The VALUE of x = 94.228