InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 251. |
[87.50 + 1.1 × 2.01 + 45.88] = ?1). 1402). 1363). 1304). 128 |
|
Answer» FOLLOW BODMAS rule to solve this QUESTION, as PER the order given below, Step-1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 87.50 + 1.1 × 2.01 + 45.88 Approximating to the CLOSEST integers ⇒ 88 + 1 × 2 + 46 ⇒ 88 + 2 + 46 ⇒ 136 |
|
| 252. |
315.27 – 527.13 + 858.59 =?1). 647.512). 674.753). 646.734). 747.91 |
|
Answer» The GIVEN PROBLEM can be EVALUATED as: ⇒ 315.27 + 858.59 = 1173.86 Hence, ⇒ 315.27 – 527.13 + 858.59 = 1173.86 – 527.13 = 646.73 |
|
| 253. |
7.8 + 5.4 × 8.2 = ?1). 52.082). 108.243). 48.054). 102.05 |
|
Answer» GIVEN EXPRESSION is, 7.8 + 5.4 × 8.2 = ? ⇒ 7.8 + 44.28 = ? ⇒ 52.08 =? |
|
| 254. |
? % of 950 + 782 = 12001). 542). 443). 344). 64 |
|
Answer» ⇒ ? % of 950 = 1200 – 782 ⇒ ? % of 950 = 418 $(\Rightarrow \FRAC{?}{{100}} \times 950 = 418)$ $(\Rightarrow \;?\; = \;\frac{{418\; \times \;100}}{{950}})$ $(\Rightarrow \;?\; = \;\frac{{41800}}{{950}})$ ⇒ ? = 44 |
|
| 255. |
33.33% of 288 + 9.09% of ∛1331.22 + 19.12% of ∜624 = ?1). 982). 1003). 1114). 222 |
|
Answer» 33.33% of 288 + 9.09% of ?1331.22 + 19.12% of ?624 = ? It can be approximated as 1/3 × 288 + 1/11 × 11 + 20% of ?625 = ? ⇒ 96 + 1 + 1/5 × 5 = ? ⇒ 97 + 1 = ? ⇒ ? = 98 |
|
| 256. |
1). 22). 153). 184). 23 |
|
Answer» $(\begin{ARRAY}{l} \sqrt {23.001 + \sqrt {5931} } \times \sqrt {624.78} = \sqrt {15624} \times ?\\ \Rightarrow \sqrt {23 + \sqrt {5929} } \times \sqrt {625} = \sqrt {15625} \times ?\\ \Rightarrow \sqrt {23 + 77} \times 25 = 125 \times ?\\ \Rightarrow \sqrt {100} = \frac{{125}}{{25}} \times ? \end{array})$ ⇒ 10 = 5 × ? ∴ ? = 2 |
|
| 257. |
1). 582). 503). 454). 40 |
|
Answer» 40.93 × 1.012 × 1.210 = ? Here, 40.93 ≈ 41 1.012 ≈ 1 1.210 ≈ 1.2 Now, the EXPRESSION will become: 41 × 1 × 1.2 ≈ ? ⇒ ? ≈ 49.2 ≈ 50 |
|
| 258. |
(755% of 523) ÷ 777 = ? 1). 52). 123). 194). 26 |
|
Answer» Given expression: $(\begin{array}{l} = \left( {\FRAC{{755}}{{100}} \times 523} \RIGHT) \div 777\\ = \left( {\frac{{755 \times {\rm{\;}}523}}{{100 \times {\rm{\;}}777}}} \right) \end{array})$ = 5.08 ? 5 = ? |
|
| 259. |
\(\frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + 3\frac{3}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\)1). \(\frac{3}{7}\)2). \(\frac{7}{3}\)3). \(\frac{2}{9}\)4). \(\frac{9}{2}\) |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the given order below. Step 1: Parts of the equation enclosed in ‘Brackets’ must be solved first. Step 2: An mathematical ‘Of’ or ‘Exponent’ must be solved next. Step 3: Next, the parts of the equation containing ‘Division’ or ‘Multiplication’ are calculated. Step 4: Last but not the least, the parts of the equation containing ‘Addition’ or ‘Subtraction’ are calculated. Given, $(\BEGIN{array}{l} \frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + 3\frac{3}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + \frac{{15}}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \left\{ {\frac{{38}}{{15}} \div \frac{{51}}{4} \times \frac{{17}}{{19}}} \right\} = \frac{1}{?} \end{array})$ $(\begin{array}{l} \Rightarrow \frac{{56}}{{135}} \div \left\{ {\frac{{38}}{{15}} \times \frac{4}{{51}} \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \frac{8}{{45}} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \times \frac{{45}}{8} = \frac{1}{?}\\ \Rightarrow \frac{7}{3} = \frac{1}{?} \end{array})$ ⇒ ? = 3/7 |
|
| 260. |
1). 312). 163). 274). 9 |
|
Answer» 237.76 × 14.98 + ?3 + 184.54 × 3.98 = 5036.75 Taking their approx. VALUE; 238 × 15 + ?3 + 185 × 4 = 5037 ⇒ 3570 + ?3 + 740 = 5037 ⇒ 4310 + ?3 = 5037 ⇒ ?3 = 5037 – 4310 ⇒ ?3 = 727 ∴ ? = ?727 ≈ ?729 = 9 |
|
| 261. |
(229.77 ÷ 1.84) ÷ 22.88 = 37.88 - 34.01 + ?1). 12). 33). 94). 7 |
|
Answer» GIVEN expression is, (229.77 ÷ 1.84) ÷ 22.88 = 37.88 - 34.01 + ? We can write the given VALUES as: 229.77 ≈ 230 and 1.84 ≈ 2 22.88 ≈ 23 and 37.88 ≈ 38 and 34.01 ≈ 34 Then, ⇒ (230 ÷ 2) ÷ 23 = 38 - 34 + ? ⇒ 115 ÷ 23 = 38 - 34 + ? ⇒ 5 = 38 - 34 + ? ⇒ 5 = 4 + ? ⇒ ? = 5 - 4 ⇒ ? ≈ 1 |
|
| 262. |
1). \(14\frac{{14}}{{19}}\)2). \(13\frac{{19}}{{21}}\)3). \(13\frac{{18}}{{19}}\)4). \(17\frac{8}{{11}}\) |
|
Answer» BODMAS rule to solve this question, as per the order given below, Step- 1- Parts of an equation enclosed in 'Brackets' must be solved first, Step- 2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step- 3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step- 4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(4\FRAC{1}{3} \times 5\frac{1}{3} \div 6\frac{1}{3} \div \frac{1}{3} + 5\frac{1}{3} - 2\frac{1}{3} = ?)$ $(\Rightarrow \;\frac{{13}}{3}\; \times \frac{{16}}{3}\; \div \frac{{19}}{3}\; \div \frac{1}{3} + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \left( {\frac{{13}}{3}\; \times \frac{{16}}{3} \times \frac{3}{{19}} \times 3} \RIGHT) + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \;\frac{{208}}{{\;19}} + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \frac{{624}}{{57}} + \frac{{304}}{{57}} - \frac{{133}}{{57}} = \;?)$ ⇒ (795/57) = ? ⇒ ? = 265/19 $(\therefore \;?\; = \;13\frac{{18}}{{19}})$ |
|
| 263. |
1). 82). 63). 104). 2 |
|
Answer» Laws of Indices: 1. am$ × an $= a{m + n}$ 2. am $÷ an $= a{m - n}$ 3. (am$)n $= amn$ 4. (a)-m $= 1/am$ 5. (a)m/n$ = n$√am$ 6. (a)0 $= 1 ⇒ 65$ × 22$ = 2x$ ⇒ 220$ ÷ 2?$ ÷ 214$ = √256 ⇒ 220 - ? - 14 = 24 ⇒ 26 - ? = 24 ⇒ 6 - ? = 4 ⇒ ? = 2 |
|
| 264. |
1). 0.902). 1.203). 1.604). 2.21 |
|
Answer» $(\frac{{22 \div 0.5 \TIMES 10 + 6 - 2}}{{30 \div 0.4 \times 4 + 76 - 6}} = ?)$ APPLY BODMAS rule in NUMERATOR and denominator $(\begin{array}{l} \Rightarrow \frac{{44 \times 10 + 4}}{{75 \times 4\; + 70\;}} = \;?\\ \Rightarrow \frac{{440 + 4}}{{300 + 70}} = \;?\end{array})$ ⇒ 444/370 = ? ∴ ? = 1.2 |
|
| 265. |
74% of 2650 + 30% of 320 = ?1). 20572). 20433). 20364). 2055 |
|
Answer» Given EXPRESSION: ⇒ 74% of 2650 + 30% of 320 = ? ⇒ $(\frac{{74}}{{100}}\; \TIMES \;2650\; + \;\frac{{30}}{{100}}\; \times \;320\; = \;?)$ ⇒ ? = 1961 + 96 ⇒ ? = 2057 |
|
| 266. |
1). 2452). 1453). 2804). 169 |
|
Answer» ⇒ (84/100) × 500 - 25/100 × ? = 350 ⇒ 84 × 5 - 350 = 1/4 × ? ⇒ 420 - 350 = 1/4 × ? ⇒ 70 × 4 = ? ⇒ ? = 280 |
|
| 267. |
(4438 – 2874 – 559) ÷ (269 – 106 – 83) = ?1). 552). 133). 474). 29 |
|
Answer» The GIVEN expression, (4438 – 28 74 – 559) ÷ (269 – 106 – 83) = ? Consider it to nearest value, ⇒ (4440 – 2875 – 560) ÷ (270 – 110 – 85) = ? ⇒ ? = 1005 ÷ 75 ⇒ ? ≈ 13.4 ∴ ? ≈ 13 |
|
| 268. |
1). 32). 63). 44). 2 |
|
Answer» Solve the given question using FOLLOWING LAWS of INDICES.$ 1. a$m$ × a$n$ = a$(m + n)$ 2. a$m$ ÷ a$n$ = a$(m - n)$ 3. [(a$m$)$n$ ] = a$(mn)$ 4. a$(1/m)$ = $m$√a$ 5. a$-m$ = 1/a$m$ 6. a$(m/n)$ = $n$√a$m$ 7. a$0 $= 1$ Given expression: 338.8 × 331.2 ÷ 335 = 33 × 33? ⇒ 338.8 + 1.2 - 5 = 33? + 1 ⇒ 335 = 33? + 1 ⇒ 5 = ? + 1 ⇒ ? = 4 |
|
| 269. |
1). 62). 163). 494). 36 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below. Step - 1 - steps of an equation ENCLOSED in ‘Brackets’ must be SOLVED first. Step - 2 - any mathematical ‘Of’ or ‘EXPONENT’ must be solved next. Step - 3 - Next, the parts of the equation that contain ‘Division’ and ‘Multiplication’ are calculated. Step - 4 - Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated. ⇒ ¾ of (470 + 18) + 5/6 of 360 = 111 × √? ⇒ 111 × √? = ¾ of 488 + 5/6 of 360 ⇒ 111 × √? = 366 + 300 ⇒ 111 × √? = 666 ⇒ √? = 666/111 ⇒ √? = 6 ⇒ ? = 62 ⇒ ? = 36 |
|