

InterviewSolution
Saved Bookmarks
1. |
Let a, b, c be real numbers with a = 0 and let `alpha,beta ` be the roots of the equation `ax^2 + bx + C = 0`. Express the roots of `a^3x^2 + abcx + c^3 = 0` in terms of `alpha,beta` |
Answer» `alpha + beta = (-b)/(a), alpha beta = (c) /(a)` Roots of the equation `a^(3) x^(2) + abcx + c^(3) = 0` are : `x=(-abcpmsqrt((abc)^(2) - 4a^(2) c^(3)))/(2a^(3))` `= (-(b)/(a))((c)/(a)) pm(sqrt(((b)/(a))^(2)((c)/(a))^(2) - 4 ((c)/(a))^(3)))/(2)` `=(alpha beta) (((alpha + beta)pmsqrt((alpha - beta)^(2))))/(2)` `=alpha beta (((alpha + beta)(alpha - beta)))/(2)` `alpha^(2) beta, alphabeta^(2)` |
|