InterviewSolution
Saved Bookmarks
| 1. |
Let a three- dimensional vector `vecV` satissgy the condition , `2vecV + vecV xx ( hati + 2hatj ) = 2hati + hatk . If 3|vecV| = sqrtm` . Then find the value of m. |
|
Answer» Correct Answer - 6 `2vecV+vecVxx(hati+2hatj) = (2hati+hatk)` `or 2vecV. (hati+2hatj) +0=(2hati+hatk). (hati+2hatj)` `or 2vecVr. (hati+2hatj)=2` `or |vecV. (hati+2hatj)^(2)|=1` `or |vecV|^(2).|hati +2hatj|^(2) cos^(2)theta=1` (`theta` is the angle between `vecV and hati+2hatj)` `or |vecV|^(2)5(1-sin^(2)theta)=1` `or |vecV|^(2) 5 sin^(2)theta =5|vecV|^(2)-1` from Eq. (i), we have `|2vecV+vecVxx(hati+2hatj)|^(2)=|2hati+hatk|^(2)` `or 4|vecV|^(2)+|vecVxx(hati+2hatj)|^(2)=5` `or 4|vecV|^(2)+|vecV|^(2).|hati + 2hatj|^(2) sin^(2) theta=5` `or 4|vecV|^(2)+5|vecV|^(2)sin^(2)theta=5` `or 4|vecV|^(2)+5|vecV|Y^(2)-1=5` ` 9|vecV|^(2)=6` `or 3|vecV|=sqrt6` ` = sqrt6 = sqrtm` m=6 |
|