1.

Let A = {x:x ∈ N}, B = {x:x = 2n, n ∈ N), C = {x:x = 2n – 1, n ∈ N} and, D = {x:x is a prime natural number} Find: i. A ∩ B ii. A ∩ C iii. A ∩ D iv. B ∩ C v. B ∩ D vi. C ∩ D

Answer»

A = All natural numbers i.e. {1, 2, 3…..} 

B = All even natural numbers i.e. {2, 4, 6, 8…} 

C = All odd natural numbers i.e. {1, 3, 5, 7……} 

D = All prime natural numbers i.e. {1, 2, 3, 5, 7, 11, …} 

i. A ∩ B 

A contains all elements of B. 

∴ B ⊂ A 

∴ A ∩ B = B 

ii. A ∩ C 

A contains all elements of C. 

∴ C ⊂ A 

∴ A ∩ C = C 

iii. A ∩ D 

A contains all elements of D. 

∴ D ⊂ A 

∴ A ∩ D = D 

iv. B ∩ C 

B ∩ C = ϕ 

There is no natural number which is both even and odd at same time. 

v. B ∩ D 

B ∩ D = 2 

2 is the only natural number which is even and a prime number. 

vi. C ∩ D 

C ∩ D = {1, 3, 5, 7…} 

Every prime number is odd except 2



Discussion

No Comment Found

Related InterviewSolutions