

InterviewSolution
Saved Bookmarks
1. |
Let `alpha,beta` be two real numbers satisfying the following relations `alpha^2+beta^2=5, 3(alpha^5+beta^5)=11(alpha^3+beta^3)1.` Possible value of `alpha beta` isA. `2`B. `-(10)/(3)`C. `-2`D. `(10)/(3)` |
Answer» Correct Answer - A `alpha^(2)+beta^(2)=5` `3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3))` `(alpha^(5)+beta^(5))/(alpha^(3)+beta^(3))=(11)/(3)` ` :. ((alpha^(3)+beta^(3))(alpha^(2)+beta^(2))-(alpha^(2)beta^(2)(alpha+beta)))/(alpha^(3)+beta^(3))=(11)/(3)` `:. alpha^(2)+beta^(2)-(alpha^(2)beta^(2)(alpha+beta))/((alpha+beta)(alpha^(2)+beta^(2)-alphabeta))=(11)/(3)` ` :. 5-(alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)` ltbrlt `:. (25-5alphabeta-alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)` Let `alphabeta=t` `(25-5t-t^(2))/(5-t)=(11)/(3)` `75-15t-3t^(2)=55-11 t` `75-15t-3t^(2)-55+11t=0` `-3t^(2)-4t+20=0` `(t-2)(3t+10)=0` ` :. t=2` or `(-10)/(3)` So `alpha beta=2`, `alphabeta=(-10)/(3)` If `alphabeta=2`, `alpha^(2)+beta^(2)=(alpha+beta)^(2)-2alphabeta` `:.5=(alpha+beta)^(2)-2xx2` `(alpha+beta)^(2)=9` `alpha+beta=+-3` for `alphabeta=(-10)/(3)`, `(alpha+beta)^(2) lt 0` `implies x^(2) +- 3x+2=0` |
|