

InterviewSolution
Saved Bookmarks
1. |
Let `f:(-1,1)vecR`be such that `f(cos4theta)=2/(2-sec^2theta)`for `theta in ``(0,pi/4)uu(pi/4,pi/2)`. Then the value(s) of `f(1/3)`is (are)(a)`1-sqrt(3/2)`(b) `1+sqrt(3/2)`(c) `1-sqrt(2/3)`(d) `1+sqrt(2/3)` |
Answer» It is given that, `f(cos4theta) = 2/(2-sec^2theta)` We have to find `f(1/3)`. So, we can consider, `cos4theta = 1/3` Now, `cos4theta = 2cos^2 2theta -1` `=>cos2theta = +-sqrt((1+cos4theta)/2 )` `=>cos2theta = +-sqrt((1+(1/3))/2 )` `=>cos2theta = +-sqrt(2/3)` Now, `f(1/3) = 2/(2-sec^2theta)` `=(2cos^2theta)/(2cos^2theta - 1)` `=(1+cos2theta)/(cos2theta)` `=1/(cos2theta)+1` `=+-sqrt(3/2) +1` `=>f(1/3) = 1+-sqrt(3/2)` So, option `a` and `b` are the correct options. |
|