InterviewSolution
Saved Bookmarks
| 1. |
Let `f:R rarr(0,oo) and g:R rarr` R be twice differntiable function such that f' and g' ar continous fucntion on R. Suppose `f(x2)=g(2)=0,f'(2)ne0and g'(2)ne.If lim_(xrarr2) (f(X)g(x))/(f(x)g(x))=1` thenA. f has a local minimum at x=2B. f has a local maximum at x=2C. `f'(2)gtf(x)`D. `f(X)-f'(x)=0 for at least one x in R |
|
Answer» Correct Answer - 1,4 `underset(xrarr2)lim (f(x)g(x))/(f(x)g(x))=1` `rarr underset(xrarr2)lim(f(x)g(x)+g(x)f(x))/(f(x)g(x)+f(x)g(x))` `(f(2)g(2)+g(2)f(2))/(f(2)g(2)+f(2)g(2))=1` `rarr f(2)=f(2)` Hence option 4 is correct As `f(2)=f(2) in (0,oo)` `rarr f(2)gt0` `rarr` f has local min at x=2 hence option 1 is correct |
|