InterviewSolution
Saved Bookmarks
| 1. |
Let `F (x) = f(x) + f ((1)/(x)),` where `f (x) = int _(1) ^(x ) (log t)/(1+t) dt.` Then F (e) equalsA. `1//2`B. 0C. 1D. 2 |
|
Answer» Correct Answer - A `F(e)=f(e)+f((1)/(e))` `rArrF(e)=int_(1)^(e)(logt)/(1+t)dt+int_(1)^(1//e)(logt)/(1+t)dt[becausef(x)=int_(1)^(x)(logt)/(1+t)dt]` On putting t `=(1)/(t)` in second integration , we get `F(e)=int_(1)^(e)(logt)/(1+t)dt+int_(1)^(e)(logt)/(t(1+t))` `=int_(1)^(e)(logt)/(t)dt=[((logt)^(2))/(2)]_(1)^(e)` `=(1)/(2)[(loge)^(2)-(log1)^(2)]=(1)/(2)` |
|