1.

Let `f(x)=(x^2-x)/(x^2+2x)` then `d(f^(-1)x)/(dx)` is equal toA. `(-3)/((1-x)^(2))`B. `(3)/((1-x)^(2))`C. `(1)/((1-x)^(2))`D. none of these

Answer» Correct Answer - D
We have, `f(x)=(x^(2)-x)/(x^(2)+2x)`
Clearly, f(x) is not derfined at `x=0, -2`
So, Domian `(f)=R-{-2,0}.`
For all `x in ` domain (f), we have
`f(x)=(x^(2)-x)/(x^(2)+2x)=(x-1)/(x+2)=1-(3)/(x+2)`
Now,
`fof^(-1)(x)=x`
`implies" "f(f^(-1)(x))=x`
`implies" "1-(3)/(f^(-1)(x)+2)=x`
`implies" "1-x=(3)/(f^(-1)(x)+2)`
`implies" "f^(-1)(x)=(3)/(1-x)-2implies(d)/(dx){f^(-1)(x)}=(3)/((1-x)^(2))`


Discussion

No Comment Found