1.

Let \(\overline{x}\) be the mean of n observations x1 , x2 , x3 ,...xn. If (a – b) is added to each observation, then what is the mean of the new set of observations?(a) zero (b) \(\overline{x}\) (c) \(\overline{x}\) – (a – b) (d) \(\overline{x}\) + (a – b)

Answer»

(d) \(\overline{x} + (a-b)\)

Given, \(\frac{x_1 + x_2+x_3+.....+x_n}{n}=\overline{x}\)

∴ \(\frac{x_1 +(a-b) +x_2+(a - b)+x_3+(a-b)+.....+x_n+(a-b)}{n}\)

\(\frac{x_1 + x_2+x_3+.....+x_n}{n} + \frac{n(a-b)}{n}\)

\(\overline{x} + (a-b)\)



Discussion

No Comment Found

Related InterviewSolutions