Saved Bookmarks
| 1. |
Let \(\overline{x}\) be the mean of n observations x1 , x2 , x3 ,...xn. If (a – b) is added to each observation, then what is the mean of the new set of observations?(a) zero (b) \(\overline{x}\) (c) \(\overline{x}\) – (a – b) (d) \(\overline{x}\) + (a – b) |
|
Answer» (d) \(\overline{x} + (a-b)\) Given, \(\frac{x_1 + x_2+x_3+.....+x_n}{n}=\overline{x}\) ∴ \(\frac{x_1 +(a-b) +x_2+(a - b)+x_3+(a-b)+.....+x_n+(a-b)}{n}\) = \(\frac{x_1 + x_2+x_3+.....+x_n}{n} + \frac{n(a-b)}{n}\) = \(\overline{x} + (a-b)\) |
|