InterviewSolution
Saved Bookmarks
| 1. |
Let `veca = 2i + j + k, and b = i+ j ` if c is a vector such that `veca .vecc = |vecc|, |vecc -veca| = 2sqrt2` and the angle between `veca xx vecb and vec is 30^(@)` , then `|(veca xx vecb)|xx vecc|` is equal toA. `2//3`B. `3//2`C. 2D. 3 |
|
Answer» Correct Answer - b `|(veca xxvecb)xxvecc|=|vecaxxvecb||vecc|sin30^(@)` `=1/2 (vecp +vecq+vecr)a^(2)` `or vecx=1/2 (vecp +vecq +vecr)` we have `veca = 2hati+hatj -2hatk and vecb = hati+hatj` `Rightarrow vecaxx vecb = 2hati -2hatj+hatk` `or |veca xx vecb|=sqrt9=3` Also given `|vecc-veca|^(2)=8` `or |vecc|^(2)=|veca|^(2)-2veca.vecc=8` Given `|aveca|=3 and veca. vecc =|vecc|` , using these we get `|vecc|^(2) -2|vecc|+1=0` `or (|vecc|-1)^(2)=0` `or |vecc|=1` Substituting values of `|veca xx vecb|and |vecc|` in (i), we get `|(veca xx vecb)xxvecc|=1/2xx 3xx 1= 3/2` |
|