InterviewSolution
Saved Bookmarks
| 1. |
Let `veca = 2i + j+k, vecb = i+ 2j -k and a` unit vector `vecc` be coplanar. If `vecc` is pependicular to `veca`. Then `vecc` isA. `1/sqrt2(-j+k)`B. `1/sqrt3(i-j-k)`C. `1/sqrt5(i-2j)`D. `1/sqrt3(i-j-k)` |
|
Answer» Correct Answer - a As `vecc` is coplanar with `veca and vecb` we take `vecc = alpha veca + betavecb` where `alpha and beta` are scalars. As `vecc` is perpendicular to `veca` , using (i), we get `0 = alphaveca.veca alpha +betavecb.veca` `or 0 =alpha (6) +beta(2+2-1) =3 (2alpha+beta) ` `or beta = -2alpha` Thus `vecc=alpha(veca -2vecb)=alpha(-3j+3k)=3alpha(-j+k)` `or |vecc|^(2)=18alpha^(2)` `or 1=18alpha^(2)` `or alpha= +- 1/(3sqrt2)` `vecc =+- 1/sqrt2 (-j+k)` |
|