1.

Let `veca and vecb` be unit vectors such that `|veca+vecb|=sqrt3`. Then find the value of `(2veca+5vecb).(3veca+vecb+vecaxxvecb)`

Answer» `(2veca+5vecb).(3veca+vecb+vecaxxvecb)=6veca.veca+17veca.vecb+5vecb.vecb=11+17veca.vecb`
`(veca.(vecaxxvecb)=vecb.(vecaxxvecb)=0,as veca and vecb` are perpendicular to `veca xx vecb`)
`|veca+vecb|=sqrt3`
`|veca+vecb|^(2)=3`
`|veca|^(2)+|vecb|^(2)+2veca.vecb=3`
`veca.vecb=1/2`
`Rightarrow (2veca+5vecb).(3veca+vecb+veca xx vecb)11+17/2=39/2`


Discussion

No Comment Found

Related InterviewSolutions