InterviewSolution
Saved Bookmarks
| 1. |
Let `veca vecb and vecc` be non- zero vectors aned `vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc`.vectors `vecV_(1) and vecV_(2)` are equal . ThenA. `veca and vecb` ar orthogonalB. `veca and vecc` are collinearC. `vecb and vecc` ar orthogonalD. `vecb= lambda (veca xx vecc) " when " lambda ` is a scalar |
|
Answer» Correct Answer - b,d `vecV_(1) = vecV_(2)` `vecaxx (vecbxxvecc) = (vecaxxvecb)xxvecc` `or (veca.vecc)vecb - (veca.vecb)vecc= (veca.vecc)vecb- (vecb.vecc)veca` `or (veca .vecb)vecc = (vecb.vecc)veca` Thus , either `vecc and veca` ar collinear or `vecb` is perpendicular to both `veca and vecc Rightarrow vecb = lamda (veca xx vecc) ` |
|