InterviewSolution
Saved Bookmarks
| 1. |
Let `veca,vecb and vecc` be three vectors such that `vecane0, |veca|=|vecc|=1,|vecb|=4and |vecbxxvecc|=sqrt15`. If `vecb-2vecc=lambdaveca` then find the value of `lambda` . |
|
Answer» Let the angle between `vecb and vecc be alpha`. Then `|vecbxxvecc|=sqrt15` `|vecb||vecc| sinalpha=sqrt15` `sin alpha=sqrt15/4` ` cos alpha = 1/4` `Rightarrowvecb-2vecc=lambdaveca` `or|vecb-2vecc|^(2)=lambda^(2)|veca|^(2)` `|vecb|^(2)+4||vecc|^(2)-4.vecb.vecc=lambda^(2)|veca|^(2)` `or 16+ 4 -4 xx 4xx 1 xx 1/4=lambda^(2)` `or lambda^(2)=16 or lambda = +-4` |
|