InterviewSolution
Saved Bookmarks
| 1. |
Let `veca, vecb, vecc` be three unit vectors and `veca.vecb=veca.vecc=0` . If the angle between `vecb and vecc` is `pi/3` then find the value of `|[veca vecb vecc]|` |
|
Answer» `veca.vecb=veca. Vecc=0` is perpendicular to vectors `vecb and vecc`. Thus `veca=lambda(vecbxxvecc)` `|veca|=|lambda(vecbxxvecc)=|lambdasqrt3/2|=1` ` |[veca vecbvecc]|=|veca.(vecbxxvecc)|` `=|lambda||(vecbxxvecc)|^(2)` `=2/sqrt3|vecb|^(2)|vecc|^(2)sin^(2)(pi/3)=2/sqrt3xx(sqrt3/2)^(2)=sqrt3/2` |
|