1.

Let `vecr` be a unit vector satisfying `vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2`A. `vecr= 2/3(veca+ veca xx vecb)`B. `vecr= 1/3(veca+ veca xx vecb)`C. `vecr= 2/3(veca- veca xx vecb)`D. `vecr= 1/3(-veca+ veca xx vecb)`

Answer» Correct Answer - b,d
`veca xx (vecr xx veca) = vecaxxvecb`
` 3 vecr - (veca.vecr) veca = veca xx vecb`
Also, `|vecrxxveca|= |vecb|`
`Rightarrow sin^(2)theta= 2/3`
`or (1-cos^(2)theta) = 2/3`
`or 1/3 = cos^(2)theta`
`Rightarrow veca.vecr = +- 1`
`Rightarrow 3 vecr +- veca = veca xx vecb1`
`or vecr = 1/3(vecaxx vecb +- veca)`


Discussion

No Comment Found

Related InterviewSolutions