InterviewSolution
Saved Bookmarks
| 1. |
Let `vecr` be a unit vector satisfying `vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2`A. `vecr= 2/3(veca+ veca xx vecb)`B. `vecr= 1/3(veca+ veca xx vecb)`C. `vecr= 2/3(veca- veca xx vecb)`D. `vecr= 1/3(-veca+ veca xx vecb)` |
|
Answer» Correct Answer - b,d `veca xx (vecr xx veca) = vecaxxvecb` ` 3 vecr - (veca.vecr) veca = veca xx vecb` Also, `|vecrxxveca|= |vecb|` `Rightarrow sin^(2)theta= 2/3` `or (1-cos^(2)theta) = 2/3` `or 1/3 = cos^(2)theta` `Rightarrow veca.vecr = +- 1` `Rightarrow 3 vecr +- veca = veca xx vecb1` `or vecr = 1/3(vecaxx vecb +- veca)` |
|