InterviewSolution
Saved Bookmarks
| 1. |
Let `vecu` be a vector on rectangular coodinate system with sloping angle `60^(@)` suppose that `|vecu-hati|` is geomtric mean of `|vecu| and |vecu-2hati|`, where `hati` is the unit vector along the x-axis . Then find the value of `(sqrt2+ 1) |vecu|` |
|
Answer» Correct Answer - 1 since angle between `vecu and hati is 60^(@)` we have `vecu. I = |vecu||hati|cos 60^(@) = (|vecu|)/2` Given that ` |vecu - hati| ,|vecu| , |vecu -2hati|` are in G.P. so `|vecu - hati|^(2)= |vecu| |vecu -2 hati|` squaring both sides, `[|vecu|^(2)+|hati|^(2)-2vecu.hati]^(2)=|vecu|^(2)[|vecu|^(2)+4|hati|^(2)-4vecu.hati]` `[|vecu|^(2)+1-(2|vecu|)/2]^(2)=|vecu|^(2)[|vecu|^(2)+4-4(|vecu|)/2]` `or |vecu|^(2)+ 2|vecu|-1=0Rightarrow|vecu|=-(2+-2sqrt2)/2` `or |vecu|= sqrt2-1` |
|