InterviewSolution
Saved Bookmarks
| 1. |
Let `vecu, vecv and vecw` be three unit vectors such that `vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2` Vector `vecu` isA. `veca-2/3vecb+vecc`B. `veca+4/3vecb+ 8/3vecc`C. `2veca-vecb + 1/3 vecc`D. `4/3veca-vecb+2/3vecc` |
|
Answer» Correct Answer - b taking dot product of `vecu + vecv + vecw =veca "with" vecu,` we have `1+vecu.vecv+vecu.vecw=veca.vecu=3/2or vecu.vecv+vecu.vecw=1/2 (i)` similarly,l taking dot product with `vecv`.we have `vecu .vecv + vecw.vecv = 3/4` Also , `veca. vecu+ veca.vecv +veca.vecw=veca.veca =4 ` `Rightarrow veca.vecw =4 - (3/2 + 7/4) = 3/4` Again, taking dot product with `vecw`, we have `vecu.vecw+vecu.vecw=3/4-1=-1/4` Adding (i), (ii) and (iii) , we have `2(vecu.vecv+vecw+vecv.vecw)=1` `or vecu.vecv+vecu.vecw+vecv.vecw=1/2` Subtracting (i), (ii) and (iii) form (iv) , we have `vecv.vecw=0,vecu.vecw -1/4 and vecu.vecv=3/4` Now , the equations `vecu xx (vecv xx vecw) = vecb and (vecuxx vecv) xx vecw =vecc` can be written as `(vecu.vecw)vecv- (vecu.vecv) vecw=vecb` `and (vecu.vecw)vecv- (vecv.vecw)vecu=vecc` `Rightarrow -1/4vecv-3/4vecw=vecb,-1/4vecv=vecc,i.e, vecv= -4vecc` `Rightarrow vecc-3/4vecw=vecb Rightarrow vecw=4/3 (vecc-vecb)` `and vecu=veca-vecv-vecw=veca+4vecc-4/3vecc+4/3vecb` `veca+4/3vecb+ 8/3vecc` |
|