InterviewSolution
Saved Bookmarks
| 1. |
Let `vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU` is a unit vector, then the maximum value of the scalar triple product `[ vecU vecV vecW]` isA. `-1`B. `sqrt10 + sqrt6`C. `sqrt59`D. `sqrt60` |
|
Answer» Correct Answer - c Given that `vecV = 2hati +hatj -hatk and vecW =hati + 3hatk and vecU` is a unit vector ` |vecU|=1` Now `|vecU vecV vecW] = vecU.(vecV xx vecW)` `= vecU . (2hati +hatj -hatk) xx ( hati + 3hatk)` `vecU . (3hati -7hatj - hatk)` ` sqrt(3^(2)+7^(2)+ 1^(2)) cos theta` Which is maximum when `cos theta =1` therefore, maximum value of [`vecU vecV vecW] - sqrt59` |
|