InterviewSolution
Saved Bookmarks
| 1. |
Let `vecx, vecy` and `vecz` be three vectors each of magnitude `sqrt(2)` and the angle between each pair of them is `pi/3`. If `veca` is a non-zero vector perpendicular to `vecx` and `vecyxxvecz` and `vecb` is a non zero vector perpendicular to `vecy` and `veczxxvecx` thenA. `vecb=(vecb.vecz)(vecz-vecx)`B. `veca=(veca.vecy)(vecy-vecz)`C. `veca.vecb=-(veca.vecy)(vecb.vecz)`D. `veca=(veca.vecy)(vecz-vecy)` |
|
Answer» Correct Answer - A::B::C We have `|vecx|=|vecy|=|vecz|=sqrt(2)` `vecx.vecy=|vecx||vecy|"cos"(pi)/3=1,vecy.vecz=1` and `vecz.vecx=1` It is given that `veca` is perpendicular to `vecx` and `vecyxxvecz` and `vecb` is perpendicular to `vecy` and `veczxxvecx`. Therefore `veca||vecx xx (vecyxxvecz)` and `vecb||vecyxx(veczxxvecx)` `veca=lamda_(1){vecxxx(vecyxxvecz)}` and `vecb=lamda_(2){vecyxx(veczxx vecx)}` for scalar `lamda_(1)` and `lamda_(2)` `implies veca=lamda_(1){(vecx.vecz)vecy-(vecx.vecy)vecz}` and `vecb=lamda_(2){(vecy.vecx)vecz-(vecy.zvecz)vecx}` `impliesveca=lamda_(1)(vecy-vecz)` and `vecb=lamda_(2)(vecz-vecx)` `impliesveca.vecy=lamda_(1)(vecy.vecy-vecy.vecz)` and `vecb.vecz=lamda_(2)(vecz.vecz-vecx.vecz)` `impliesveca.vecy=lamda_(1)(2-1)` and `vecb.vecz=lamda_(2)(2-1)`............i `implies lamda_(1)=veca.vecy` and `lamda_(2)=vecb.vecz` Sunstituting the values of `lamda_(1)` and `lamda_(2)` in i we get `impliesveca=(veca.vecy)(vecy-vecz)` and `vecb=(vecb.vecz)(vecz-vecx)` Thus option b and c are correct. Now `veca.vecb=(veca.vecy)(vecy-vecz).(vecb.vecz)(vecz-vecx)` `impliesveca.vecb=(veca.vecy)(vecb.vecz){(vecy-vecz).(vecz-vecx)}` `impliesveca.vecb=(veca.vecy(vecb.vecz)){(vecy.vecz-vecy.vecx-vecz.vecz+vecz.vecx)}` `implies veca.vecb=(veca.vecy(vecb.vecz)(1-1-2+1)` `implies veca.vecb=-(veca.vecy)(vecb.vecz)` so option c is correct. |
|