InterviewSolution
Saved Bookmarks
| 1. |
`(lim)_(x->0)(s i n a x)/(sinb x)a ,b ,!=0` |
|
Answer» Here, we will use the property, `lim_(x->0)sinx/x = 1` `lim_(x->0) (sinax)/(sinbx) = lim_(x->0)((axsin ax)/(ax))/((bxsinbx)/(bx))` `= lim_(x->0)(ax(sin ax)/(ax))/(bx(sin bx)/(bx))` `= lim_(x->0) a/b[((sin ax)/(ax))/((sin bx)/(bx))]` `= a/b[(lim_(x->0)((sin ax)/(ax)))/(lim_(x->0)((sin bx)/(bx)))]` Now, let `ax = y and bx = z` Then, our expression becomes, `= a/b[(lim_(y->0)((sin y)/(y)))/(lim_(z->0)((sin z)/(z)))]` `=a/b[1/1] = a/b` |
|