1.

` lim_(x to - infty) [((x^(4) sin (1/x) + x^(2)))/((1+|x|^(3)))]=...`

Answer» Correct Answer - `-1`
`underset( x to - infty) lim ((x^(4) sin. 1/x + x^(2))/(1+|x|^(3))) = underset(x to - infty) lim (x^(4)sin.1/x + x^(2))/(1-x^(3))`
On dividing by `x^(3)`, we get
`underset(x to - infty) lim ((sin (1//x))/(1/x) + 1/x )/(1/x^(3)-1) = (1+0)/(0-1) =- 1`


Discussion

No Comment Found