

InterviewSolution
Saved Bookmarks
1. |
List all the elements of each of the sets given below. H = {x : x ϵ Z, |x| ≤ 2}. |
Answer» Given x ∈ Z and |x| ≤ 2 Z is a set of integers Integers are …-3, -2 , -1, 0, 1, 2, 3, … Now, if we take x = -3 then we have to check that it satisfies the given condition |x| ≤ 2 |-3| = 3 > 2 So, -3 ∉ H If x = -2 then |-2| = 2 [satisfying |x| ≤ 2] So, -2 ∈ H If x = -1 then |-1| = 1 [satisfying |x| ≤ 2] ∴ -1 ∈ H If x = 0 then |0| = 0 [satisfying |x| ≤ 2] ∴ 0 ∈ H If x = 1 then |1| = 1 [satisfying |x| ≤ 2] ⇒ 1 ∈ H If x = 2 then |2| = 2 [satisfying |x| ≤ 2] So, 2 ∈ H If x = 3 then |3| = 3 > 2 [satisfying |x| ≤ 2] So, 3 ∉ H So, H = {-2, -1, 0, 1, 2} So, E = {0, 1} |
|