1.

List all the elements of each of the sets given below. H = {x : x ϵ Z, |x| ≤ 2}.

Answer»

Given x ∈ Z and |x| ≤ 2 

Z is a set of integers 

Integers are …-3, -2 , -1, 0, 1, 2, 3, … 

Now, if we take x = -3 then we have to check that it satisfies the given condition |x| ≤ 2 

|-3| = 3 > 2 

So, -3 ∉ H 

If x = -2 then |-2| = 2 [satisfying |x| ≤ 2] 

So, -2 ∈ H 

If x = -1 then |-1| = 1 [satisfying |x| ≤ 2] 

∴ -1 ∈ H 

If x = 0 then |0| = 0 [satisfying |x| ≤ 2] 

∴ 0 ∈ H 

If x = 1 then |1| = 1 [satisfying |x| ≤ 2] 

⇒ 1 ∈ H 

If x = 2 then |2| = 2 [satisfying |x| ≤ 2] 

So, 2 ∈ H 

If x = 3 then |3| = 3 > 2 [satisfying |x| ≤ 2] 

So, 3 ∉ H 

So, H = {-2, -1, 0, 1, 2} 

So, E = {0, 1}



Discussion

No Comment Found

Related InterviewSolutions