1.

निम्नलिखित में प्रत्येक का `(dy)/(dx)` ज्ञात कीजिए `y=tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}`

Answer» `y=tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}`
माना `x^(2)=costheta` तब `theta=cos^(-1)x^(2)`
`thereforey=tan^(-1){(sqrt(1+costheta)-sqrt(1-costheta))/(sqrt(1+costheta)+sqrt(1-costheta))}`
`rArry=tan^(-1){(sqrt(2cos^(2)theta/2)-sqrt(2sin^(2)theta/2))/(sqrt(2cos^(2)theta/2)+sqrt(2sin^(2)theta/2))}`
`rArry=tan^(-1){(costheta/2-sintheta/2)/(costheta/2+sintheta/2)}`
`rArry=tan^(-1){(1-tantheta/2)/(1+tantheta/2)}`
`rArry=tan^(-1){tan(pi/4-theta/2)}`
`rArry=pi/4-theta/2`
`rArry=pi/4-1/2cos^(-1)x^(2)`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`(dy)/(dx)=d/(dx){pi/4-1/2cos^(-1)x^(2)}`
`rArr(dy)/(dx)=0-1/2(-1)/(sqrt(1-(x^(2))^(2)))d/(dx)(x^(2))`
`rArr(dy)/(dx)=1/(2sqrt(1-x^(4)))xx2x`
`=x/(sqrt(1-x^(4)))`


Discussion

No Comment Found