1.

निम्नलिखित फलनों की सांतत्यता की जाँच x = 0 पर कीजिए - (a) `f(x) = {{:((1-cos x)/(x^(2))",",x ne 0),((1)/(2)",",x = 0):}` (b) `f(x) = {{:((sin ax)/(sin bx)",",x ne 0),((a)/(b)",",x = 0):}`

Answer» (a) यहाँ `f(x)={{:((1-cos x)/(x^(2))",",x ne 0),(" "(1)/(2)",",x = 0):}`
(i) `f(0) = (1)/(2)`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)(1-cos(0+h))/((0+h)^(2))`
`=underset(h rarr 0)(lim)(1-cos h)/(h^(2))`
`=underset(h rarr 0)(lim)(1-(1-2 "sin"^(2) (h)/(2)))/(h^(2))" "[because cos x = 1 -2 "sin"^(2)(x)/(2)]`
`=underset(h rarr 0)(lim)(2"sin"^(2)(h)/(2))/(h^(2))`
`=2 underset(h rarr 0)(lim)(("sin"(h)/(2))/((h)/(2)))^(2)xx (1)/(4)`
`=2 xx (1)^(2)xx(1)/(4)," "[because underset(theta rarr 0)(lim)(sin theta)/(theta)=1]`
`=(1)/(2)`
(iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`=underset(h rarr 0)(lim)(1-cos(0-h))/((0-h)^(2))`
`=underset(h rarr 0)(lim)(1-cos h)/(h^(2))" "[because cos (-theta)=cos theta]`
`=underset(h rarr 0)(lim)(2"sin"^(2)(h)/(2))/(h^(2))`
`=2 underset(h rarr 0)(lim)(("sin"(h)/(2))/((h)/(2)))^(2)xx(1)/(4)`
`=(1)/(2)`
`therefore" "underset(x rarr 0^(+))(lim)f(x)=underset(x rarr 0^(-))(lim)f(x)=f(0)`
अत: `f(x), x = 0` पर संतत है ।
(b) यहाँ `f(x)={{:((sin ax)/(sin bx)",",x ne 0),((a)/(b)",",x = 0):}`
(i) `f(0) = (a)/(b)`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)(sin a(0+h))/(sin b(0+h))`
`=underset(h rarr 0)(lim)(sin ah)/(sin bh)`
`=underset(h rarr 0)(lim)[(sin ah)/(ah)xxahxx(bh)/(sinbh)xx(1)/(bh)]`
`=(a)/(b)[underset(h rarr 0)(lim)(sin ah)/(ah)xx underset(h rarr 0)(lim)(1)/(((sin bh)/(bh)))]`
`=(a)/(b)xx 1 xx 1," "[because h rarr 0 rArr ah rarr "0 और bh" rarr 0]`
`=(a)/(b)`
(iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`=underset(h rarr 0)(lim)(sin a(0-h))/(sin b(0-h))`
`=underset(h rarr 0)(lim)(sin(-ah))/(sin(-bh))`
`= underset(h rarr 0)(lim)(sin ah)/(sin bh)`
`=(a)/(b)`
`therefore" "underset(x rarr 0^(+))(lim)f(x)=underset(x rarr 0^(-))(lim)f(x)=f(0)=(a)/(b)`
अत: `f(x), x = 0` पर संतत है ।


Discussion

No Comment Found

Related InterviewSolutions