InterviewSolution
Saved Bookmarks
| 1. |
यदि `f(x)={{:((|x|-1)/(x-1)",",x ne 1),(-1",",x = 1):}`, तब दर्शाइये कि f बिन्दु x = 1 पर असंतत है । |
|
Answer» (i) `f(1) =-1` (ii) R.H.L. `=underset(x rarr 1^(+))(lim)f(x)=underset(h rarr 0)(lim)f(1+h)` `=underset(h rarr 0)(lim)(|1+h|-1)/((1+h)-1)` `=underset(h rarr 0)(lim)(0+h)/(h)` `=underset(h rarr 0)(lim)(h)/(h)` = 1. (iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(1-h)` `=underset(h rarr 0)(lim)(|1-h|-1)/((1-h)-1)` `=underset(h rarr 0)(lim)(|-h|)/(-h)` `=underset(h rarr 0)(lim)(h)/(-h)," "[because |-x|=x]` = -1. `therefore" "underset(x rarr 1^(+))(lim)f(x) ne underset(x rarr 1^(-))(lim)f(x)` अत: फलन f(x) बिन्दु x = 0 पर असंतत है । |
|