1.

यदि `f(x)={{:((|x|-1)/(x-1)",",x ne 1),(-1",",x = 1):}`, तब दर्शाइये कि f बिन्दु x = 1 पर असंतत है ।

Answer» (i) `f(1) =-1`
(ii) R.H.L. `=underset(x rarr 1^(+))(lim)f(x)=underset(h rarr 0)(lim)f(1+h)`
`=underset(h rarr 0)(lim)(|1+h|-1)/((1+h)-1)`
`=underset(h rarr 0)(lim)(0+h)/(h)`
`=underset(h rarr 0)(lim)(h)/(h)`
= 1.
(iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(1-h)`
`=underset(h rarr 0)(lim)(|1-h|-1)/((1-h)-1)`
`=underset(h rarr 0)(lim)(|-h|)/(-h)`
`=underset(h rarr 0)(lim)(h)/(-h)," "[because |-x|=x]`
= -1.
`therefore" "underset(x rarr 1^(+))(lim)f(x) ne underset(x rarr 1^(-))(lim)f(x)`
अत: फलन f(x) बिन्दु x = 0 पर असंतत है ।


Discussion

No Comment Found

Related InterviewSolutions