1.

निम्नलिखित फलनों की सांतत्यता की जाँच x = 0 पर कीजिए - (a) `f(x) = {{:((|sin x|)/(x)",",x ne 0),(1",",x = 0):}` (b) `f(x) = {{:(x "sin"(1)/(x)",",x ne 0),(0",",x = 0):}`

Answer» (a) यहाँ `f(x)=(|sin x|)/(x),`
(i) `f(0)=1`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)(|sin (0 + h)|)/((0+h))," "[because x = 0 + h ne 0]`
`=underset(h rarr 0)(lim)(|sin h|)/(h)`
`=underset(h rarr 0)(lim)(sin h)/(h)`
`= 1" "[because underset(theta rarr 0)(lim)(sin theta)/(theta)=1]`
(iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`=underset(h rarr 0)(lim)(|sin (0-h)|)/((0-h))`
`=underset(h rarr 0)(lim)(|sin (-h)|)/(-h)`
`=underset(h rarr 0)(lim)(|-sin h|)/(-h)," "[because sin (-theta)=sin theta]`
`=underset(h rarr 0)(lim)(sin h)/(-h)`
`=-1" "[because underset(theta rarr 0)(lim)(sin theta)d/(theta)=1]`
`therefore" "underset(x rarr 0^(-))(lim)f(x) ne underset(x rarr 0^(+))(lim)f(x)=f(0)`
अत: `f(x), x = 0` पर असंतत है ।
(b) यहाँ `f(x)=x "sin"(1)/(x)`
(i) `f(0)=0`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)(0+h)"sin"(1)/((0+h))`
`=underset(h rarr 0)(lim)h sin((1)/(h))`
`= 0 xx` परिमिति राशि, [`because "sin"(1)/(h)` का मान -1 और +1 के मध्य स्थित होता है]
= 0
(iii) L.H.L. `=underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`=underset(h rarr 0)(lim)(0-h)sin((1)/(0-h))`
`=underset(h rarr 0)(lim)(-h)sin(-(1)/(h))`
`=underset(h rarr 0)(lim)(-h)(-sin((1)/(h)))" "[because sin(-theta)=-sin theta]`
`=underset(h rarr 0)(lim)hsin((1)/(h))`
`=0 xx` अपरिमित राशि,
[`because "sin"(1)/(h)` का मान -1 और +1 के मध्य स्थित होता है]
= 0
`therefore" "underset(x rarr 0^(+))(lim)f(x)=underset(x rarr 0^(-))(lim)f(x)=f(0)`
अत: `f(x), x = 0` पर संतत है ।


Discussion

No Comment Found

Related InterviewSolutions