

InterviewSolution
Saved Bookmarks
1. |
Number of real solutions of `sqrt(2x-4)-sqrt(x+5)=1` isA. `0`B. `1`C. `2`D. infinite |
Answer» Correct Answer - B `(b)` We have `sqrt(2x-4)=1+sqrt(x+5)` Squaring `2x-4=1+(x+5)+2sqrt(x+5)` `implies x-10=2sqrt(x+5)` `implies x^(2)+100-20x=4x+20` `impliesx^(2)-24x+80=0` `impliesx=4,20` Putting `x=4`, we get `sqrt(4)-sqrt(9)=1`, which is not possible Putting `x=20`, we get `sqrt(36)-sqrt(25)=1` Hence, `x=20` is the only solution. |
|