1.

One of the solutions of the equation 4 sin4 x + cos4 x = 1 is (a) nπ (b) \(\frac{2nπ}{3}\)(c) \((n-1) \frac{\pi}{4}\) (d) \((2n+1)\frac{\pi}{2}\)

Answer»

Answer : (a) nπ 

4 sin4 x + cos4 x = 1 

⇒ 4 sin4 x + (1 – sin2x) 2 = 1 

⇒ 4 sin4x + 1 + sin4x – 2 sin2x = 1 

⇒ 5 sin4x – 2 sin2x = 0 

⇒ sin2x (5 sin2x – 2) = 0 

⇒ sin2x = 0 or 5 sin2x – 2 = 0

⇒ sin x = 0 or sin x = \(\sqrt{\frac{2}{5}}\) 

⇒ x = nπ or x = sin–1 ( \(\sqrt{\frac{2}{5}}\) )

= nπ + (–1)n sin–1  ( \(\sqrt{\frac{2}{5}}\) ), n ∈ I

x = nπ is one of the solutions of the given equation.



Discussion

No Comment Found