InterviewSolution
Saved Bookmarks
| 1. |
फलन f(t) के सांतत्यता की जाँच `t = (pi)/(2)` पर कीजिए - `f(t) = {{:((cos t)/((pi)/(2)-t)",",t ne (pi)/(2)),(1",",t = (pi)/(2)):}` |
|
Answer» (i) `f((pi)/(2))=1` (ii) R.H.L. `=underset(t rarr (pi^(+))/(2))(lim)f(t)=underset(h rarr 0)(lim)f((pi)/(2)+h)` `=underset(h rarr 0)(lim)(cos((pi)/(2)+h))/((pi)/(2)-((pi)/(2)+h))` `=underset(h rarr 0)(lim)(-sin h)/(-h)` `=underset(h rarr 0)(lim)(sin h)/(h)=1` (iii) L.H.L. `=underset(t rarr (pi^(-))/(2))(lim)f(t)=underset(h rarr 0)(lim)f((pi)/(2)-h)` `=underset(h rarr 0)(lim)(cos((pi)/(2)-h))/((pi)/(2)-((pi)/(2)-h))` `= underset(h rarr 0)(lim)(sin h)/(h)` = 1. `therefore" "underset(t rarr (pi^(+))/(2))(lim)f(t)=underset(t rarr (pi^(-))/(2))(lim)f(t)=1` अत: `f(t), t=(pi)/(2)` पर संतत है । |
|