1.

फलन `tan x^(2)` का प्रथम सिद्धांत से अवलंकन गुणांक ज्ञात कीजिएः

Answer» `y=tan x^(2)` ........(i)
`therefore y=deltay=tan (x+deltax)^(2)` ........(ii)
`therefore y+deltay-y=tan(x+deltax)^2-tanx^(2)`
`=(sin (x+deltax)^(2))/(cos(x+deltax)^(2))-(sin x^(2))/(cos x^(2))`
`=(sin(x+deltax)^(2)cosx^(2)-cos(x+deltax)^(2)sinx^(2))/(cos (x+deltax)^(2).cosx^2)`
`=sin [(x+deltax)^(2)-x^(2)]/(cos (x+deltax)^2cosx^(2))`
`=(sin(x^2+deltax^(2)+2xdeltax-x^(2)))/(cos((x+deltax)^(2)cos))`
दोनों पक्षों को `deltax` से भाग देकर `underset(deltax to 0)lim` लेने पर
`underset(deltax to 0)lim (deltay)/(deltax)=(dy)/(dx)`
`underset(deltax to 0)lim (sin deltax(2x+deltax))/(deltax(2x+deltax)).underset(deltax to 0)lim (2x+deltax)/(cos (x+deltax)^(2).cosx^(2))`
`=1.underset(deltax to 0)lim (2x+deltax)/(cos (x+deltax)^(2).cosx^(2))`
`=(2x+0)/(cos (x+0)^(2) cos x^(2))xx1`
`=(2x)/(cos^(2)x^(2))=2x sec^(2)x^2`
`therefore (d)/(dx)(tan x^(2))=2x sec^(2) x^(2)`


Discussion

No Comment Found