InterviewSolution
Saved Bookmarks
| 1. |
Points `veca , vecb vecc and vecd` are coplanar and `(sin alpha)veca + (2sin 2beta) vecb + (3sin 3gamma) vecc - vecd= vec0` . Then the least value of `sin^(2) alpha + sin^(2) 2beta + sin^(2) 3gamma` isA. `1//14`B. 14C. 6D. `1//sqrt6` |
|
Answer» Correct Answer - a Points `veca , vecb , vecc and vecd` are coplanar, therefore, `sin alpha + 2 sin 2 beta + 3 sin 3 gamma =1 ` ` now |sin alpha + 2sin 2 beta + 2sin 3 gamma|` `le sqrt(1+4+9). sqrt(sin^(2)alpha +sin^(2)2beta + sin^(2) 3gamma)` `or sin ^(2) alpha + sin^(2) 2beta + sin ^(2) 3 gamma le 1/14` |
|