InterviewSolution
Saved Bookmarks
| 1. |
Prove: `(tan theta)/(sec theta-1)=(tan theta+sec theta+1)/(tan theta+sec theta-1)` |
|
Answer» Proof: `1+tan^(2)theta=sec^(2)theta` …(Identity) `:.tan^(2) theta=sec^(2)theta-1` `:.tan theta xx ta theta=(sec theta+1)(sec theta-1)` `:.(tan theta)/((sec theta-1))=((sec theta+1))/(tan theta)` By theorem on equal ratios, `(tan theta)/((sec theta-1))=((sec theta+1))/(tan theta)=(tan theta+sec theta+1)/(sec theta-1+tan theta)` `:.(tan theta)/(sec theta-1)=(tan theta+sec theta+1)/(tan theta+sec theta-1)` |
|