

InterviewSolution
Saved Bookmarks
1. |
Prove that `1+tanA Tan(A/2)=tanA cot(A/2)-1=secA`. |
Answer» Here, we will use, `tan2A = (2tanA)/(1-tan^2A)` `1+tanAtan(A/2) = 1+((2tan(A/2))/(1-tan^2(A/2))*tan(A/2))` `=(1-tan^2(A/2)+2tan^2(A/2))/(1-tan^2(A/2))` `=(1+tan^2(A/2))/(1-tan^2(A/2))` `= (sec^2(A/2))/((cos^2(A/2)-sin^2(A/2))/(cos^2(a/2)))` `=(sec^2(A/2))/(sec^2(A/2)cosA)= secA` Now, `tanAcot(A/2) -1 = ((2tan(A/2))/(1-tan^2(A/2)))(1/tan(a/2)) - 1` `(2-1+tan^2(A/2))/(1-tan^2(A/2))` `=(1+tan^2(A/2))/(1-tan^2(A/2))` `= (sec^2(A/2))/((cos^2(A/2)-sin^2(A/2))/(cos^2(a/2)))` `=(sec^2(A/2))/(sec^2(A/2)cosA)= secA` |
|