InterviewSolution
Saved Bookmarks
| 1. |
Prove that cos5 θ = 16 cos5 θ – 20 cos3 θ + 5 cos θ. |
|
Answer» cos5 θ = cos(2θ + 3θ) = cos 2θ cos 3θ – sin 2θ sin 3θ = (2 cos2 θ – 1) (4 cos3 θ – 3 cos θ) – 2 sin θ cos θ (3 sin θ – 4 sin3 θ) = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 sin2 θ cos θ + 8 cos θ sin4 θ = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6(1 – cos2 θ) cos θ + 8 cos θ (1 – cos2 θ)2 = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos 0(1+ cos4 θ – 2 cos2 θ) = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos θ + 8 cos5 θ – 16 cos3 θ = 16 cos3 θ – 20 cos3 θ + 5 cos θ = RHS |
|