InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `"sec"((3pi)/2-theta)"sec"(theta-(5pi)/2)+t a n((5pi)/2+theta)"tan"(theta-(3pi)/2)=-1.` |
|
Answer» `L.H.S. = sec(((3pi)/2) - theta)sec(theta - ((5pi)/2))+ tan (((5pi)/2)+theta)tan(theta-((3pi)/2))` `= sec((3pi)/2 - theta)sec(-((5pi)/2- theta))+ tan ((5pi)/2+theta)tan(-((3pi)/2-theta))` As, `sec(-theta) = sec theta and tan (-theta) = -tan theta` So, our expression becomes, `= sec((3pi)/2 - theta)sec((5pi)/2- theta)- tan ((5pi)/2+theta)tan((3pi)/2-theta)` `=-cosecthetasec(2pi+(pi/2-theta))-tan(2pi+(pi/2+theta))tantheta` `= -cossecthetacosectheta+cotthetacottheta` `=cot^2theta - cosec^2theta` `=-(cosec^2theta - cot^2theta)` `=-1 = R.H.S.` |
|