1.

Prove that : `sin^2(72^@) - sin^2 (60^@) = (sqrt5 - 1)/8`

Answer» Here, we will use, ` sin 18^@ = (sqrt5-1)/4`
`sin^2(72^@) -sin^2(60^@)`
`=sin^2(90^@ -18^@) - sin^2(60^@)`
`=cos^2 (18^@)- sin^2(60^@)`
`=1-sin^2(18^@)- sin^2(60^@)`
Putting values of `sin 18^@ and sin 60^@`
`=1-( (sqrt5-1)/4)^2 -(sqrt3/2)^2`
`=1-((6-2sqrt5)/16)-3/4`
`=(16-6+2sqrt5-12)/16`
`=(2sqrt5-2)/16`
`:. sin^2(72^@) -sin^2(60^@) =(sqrt5-1)/8`


Discussion

No Comment Found

Related InterviewSolutions