

InterviewSolution
Saved Bookmarks
1. |
Prove that `( sin 5x - 2 sin 3x + sin x )/( cos 5x - cos x) = tan x` |
Answer» Here, we will use the following rules, `sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)` `cosA-cosB = -2sin((A+B)/2)sin((A-B)/2)` `L.H.S. = (sin5x - 2sin3x+sinx)/(cos5x-cosx)` `= ((sin5x - sin3x)-(sin3x-sinx))/(cos5x-cosx)` `=(2cos4xsinx - 2cos2xsinx)/(-2sin3xsin2x)` `=(sinx(cos4x-cos2x))/(-sin3xsin2x)` `=(sinx(-2sin3xsinx))/(-sin3xsin2x)` `=(2sin^2x)/(sin2x)` `= (2sin^2x)/(2sinxcosx)` `=sin/cosx = tanx = R.H.S.` |
|