1.

Prove that `tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4`A. `(pi)/(2)`B. `(pi)/(4)`C. `(2pi)/(3)`D. 0

Answer» We have
`tan^(-1)1/3+tan^(-1)1/7+tan^(-1)1/13+..+tan^(-1)(1)/(n^(2)+n_+1)+…to infty`
`=underset(nrarrinfty)lim underset(r=1)overset(n)Sigma tan^(-1){(1)/(1+r(r+1))}`
`=underset(nrarrinfty)lim underset(r=1)oveset(n)Sigma tan^(-1){(r+1)-r)/(1+r(r+1))`
`=underset(nrarrinfty)lim (tan^(-1)(n+1)-tan^(-1)1)`
`=tan^(-1)infty-tan^(-1)=(pi)/(12)-(pi)/(4)-(pi)/(4)`


Discussion

No Comment Found