1.

prove that `(veca.(vecbxxhati)hati(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb`

Answer» `veca.(vecbxx hati)hati = ((vecaxxvecb).hati)hati`
`if veca xx vecb = xhati + yhatj + zhatk , then (veca xx vecb). Hati = x `
similarly, `(veca. (vecb xx vecj)) hatj = y and (veca . (vecb xx veck)) =z `
`Rightarrow (veca.(vecb.hati)) hati+ (veca . vecb xx vecj)) hatj + (veca .(vecb xx veck)) hatk`
= xhati + y hatj = zhatk = veca xx vecb`


Discussion

No Comment Found

Related InterviewSolutions