InterviewSolution
Saved Bookmarks
| 1. |
prove that `(veca.(vecbxxhati)hati(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb` |
|
Answer» `veca.(vecbxx hati)hati = ((vecaxxvecb).hati)hati` `if veca xx vecb = xhati + yhatj + zhatk , then (veca xx vecb). Hati = x ` similarly, `(veca. (vecb xx vecj)) hatj = y and (veca . (vecb xx veck)) =z ` `Rightarrow (veca.(vecb.hati)) hati+ (veca . vecb xx vecj)) hatj + (veca .(vecb xx veck)) hatk` = xhati + y hatj = zhatk = veca xx vecb` |
|